The rotational speed of the person is 0.4 rad/s.
<h3>
Rotational speed (rad/s)</h3>
The rotational speed of the person in radian per second is calculated as follows;
v = ωr
where;
- v is linear speed in m/s
- r is radius in meters
- ω is speed in rad/s
ω = v/r
ω = 2/5
ω = 0.4 rad/s
Thus, the rotational speed of the person is 0.4 rad/s.
Learn more about rotational speed here: brainly.com/question/6860269
Answer:
He did not multiply the chlorine and oxygen atoms by the coefficient 4
Explanation:
Answer:
6 cm long
Explanation:
F = 4110N
Vo(speed of sound) = 344m/s
Mass = 7.25g = 0.00725kg
L = 62.0cm = 0.62m
Speed of a wave in string is
V = √(F / μ)
V = speed of the wave
F = force of tension acting on the string
μ = mass per unit density
F(n) = n (v / 2L)
L = string length
μ = mass / length
μ = 0.00725 / 0.62
μ = 0.0116 ≅ 0.0117kg/m
V = √(F / μ)
V = √(4110 / 0.0117)
v = 592.69m/s
Second overtone n = 3 since it's the third harmonic
F(n) = n * (v / 2L)
F₃ = 3 * [592.69 / (2 * 0.62)
F₃ = 1778.07 / 1.24 = 1433.927Hz
The frequency for standing wave in a stopped pipe
f = n (v / 4L)
Since it's the first fundamental, n = 1
1433.93 = 344 / 4L
4L = 344 / 1433.93
4L = 0.2399
L = 0.0599
L = 0.06cm
L = 6cm
The pipe should be 6 cm long