Answer:
Option A (0.043 g) is the correct answer.
Explanation:
Given:
= 43 mg
As we know,

then,
⇒ 
Thus, the above is the correct alternative.
At the melting point. Draw a line up from 0 degrees and a line to the right from 1 atm. They meet at the line between solid and liquid... the melting point
population is the number of species living in a given area if this is regarding biology or earth studies :)
0.24 moles of oxygen must be placed in a 3.00 L container to exert a pressure of 2.00 atm at 25.0°C.
The variables given are Pressure, volume and temperature.
Explanation:
Given:
P = 2 atm
V = 3 litres
T = 25 degrees or 298.15 K by using the formula 25 + 273.17 = K
R = 0.082057 L atm/ mole K
n (number of moles) = ?
The equation used is of Ideal Gas law:
PV = nRT
n = 
Putting the values given for oxygen gas in the Ideal gas equation, we get
n = 
= 0.24
Thus, from the calculation using Ideal Gas law it is found that 0.24 moles of oxygen must be placed in a container.
Ideal gas law equation is used as it tells the relation between temperature, pressure and volume of the gas.