Answer: 4.
and 
Explanation:
a) The given reaction is 
As the mass on both reactant and product side must be equal:


As the atomic number on both reactant and product side must be equal:



b) 
Total mass on reactant side = total mass on product side
15 =15 + x
x = 0
Total atomic number on reactant side = total atomic number on product side
8 = 7 + y
y = 1

B) 6
one above one below and 2 on the left and right sides
Answer:
1, 1, 2, 3
Explanation:
The numbers 1 and 8 both have 1 sig. fig.
The number 13 has 2 sig. figs.
The number 104 has 3 sig. figs.
<u>Answer:</u> The chemical equation is written below.
<u>Explanation:</u>
Every balanced chemical equation follows law of conservation of mass.
This law states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form. This also means that total number of individual atoms on reactant side must be equal to the total number of individual atoms on the product side.
The chemical equation for the reaction of elemental boron and oxygen gas follows:

By Stoichiometry of the reaction:
4 moles of elemental boron reacts with 3 moles of oxygen gas to produce 2 moles of diboron trioxide.
The chemical equation for the reaction of diboron trioxide and water follows:

By Stoichiometry of the reaction:
1 mole of diboron trixoide reacts with 3 moles of water to produce 2 moles of boric acid.
Hence, the chemical equations are written above.
Answer:
+1.03 V
Explanation:
The standard emf of the voltaic cell is the value of the standard potential of it, which is calculated by the standard reduction potential (E°).
The standard reduction potential is the potential needed for the reduction reaction happen, and it's determined by the reaction with the hydrogen cell (which has E° = 0.0V). The half-reactions of reduction of Ni⁺² and Ag⁺, are:
Ni⁺²(aq) + 2e⁻ → Ni(s) E° = -0.23 V
Ag⁺(aq) + e⁻ → Ag(s) E° = +0.80 V
The value is calculated by a spontaneous reaction, in which the cell with the greater E° is reduced (gain electrons), and the other is oxidized (loses electrons). So, Ag⁺ reduces.
emf = E°reduces - E°oxides
emf = 0.80 - (-0.23)
emf = +1.03 V