The higher the pressure, the higher boiling point of water. At lower the pressure, the boiling point of water comes down. So, the lower pressure inreases the boiling resulting more evaporation. As we go higher in altitude, the atmospheric pressure decreases. This results in decreasing the boiling point at higher altitude and increase in boiling of water. In fact, at the sea level ,the the sea water boils at 100 degree C where atmospheric pressre is normal. However , the boiling takes place at a lower temperature at the top of a mountain due to low pressure. In other words the boling is faster at the top of a mountain than that at its foot.
The chart lists the masses and velocities of four objects.
Which object requires the greatest change in momentum in order to stop its motion?
Answer
Z
Answer:
47 mW
Explanation:
The average value of the Poynting vector, S = 0.939 W/m² = Intensity of wave, I
S = I S
Also, I = P/A where P = Et, P = power of electromagnetic wave, E = energy of electromagnetic wave in time t and t = time = 1 min = 60 s and A = area = lb since the electromagnetic waves falls on area equal to that of a rectangle.
So, S = Et/A
E = SA/t
= Slb/t
= 0.939 W/m² × 1.5 m × 2.0 m/60 s
= 2.817 W/60 s
= 0.047 W
= 47 mW
So, 47 mW of electromagnetic energy falls on the area in 1.0 minute.
Answer:
for 
Where z=0 m is the position of Miss Piggy and z=4 m is the position of the speaker.
Explanation:
Assuming that Miss Piggy emits a sound wave that is in phase with the speaker, and that z=0 is the position of Miss Piggy and z=4 is the position of the speaker, we would have a superposition of two traveling sound waves. Furthermore let's assume that both waves have the same amplitude. The total resulting wave will be given by:
where
is the angular frequency of the traveling wave and
is the wave number defined as
.
is the wavelength of both traveling waves (they have the same wavelength because they have the same frequency).
where v is the speed of sound.
By using the trigonometric identity
we can rewrite
as
.
In order for the resulting wave to have maximum destructive interference, that is to be zero for any time t, we need to have


