Answer:
go to : www.planetresourses.com/test2.00/answers, ant type in that test name
Explanation:
yee
It would be negative regardless of what you define as a positive direction.
Answer:
x(t) = - 6 cos 2t
Explanation:
Force of spring = - kx
k= spring constant
x= distance traveled by compressing
But force = mass × acceleration
==> Force = m × d²x/dt²
===> md²x/dt² = -kx
==> md²x/dt² + kx=0 ------------------------(1)
Now Again, by Hook's law
Force = -kx
==> 960=-k × 400
==> -k =960 /4 =240 N/m
ignoring -ve sign k= 240 N/m
Put given data in eq (1)
We get
60d²x/dt² + 240x=0
==> d²x/dt² + 4x=0
General solution for this differential eq is;
x(t) = A cos 2t + B sin 2t ------------------------(2)
Now initially
position of mass spring
at time = 0 sec
x (0) = 0 m
initial velocity v= = dx/dt= 6m/s
from (2) we have;
dx/dt= -2Asin 2t +2B cost 2t = v(t) --- (3)
put t =0 and dx/dt = v(0) = -6 we get;
-2A sin 2(0)+2Bcos(0) =-6
==> 2B = -6
B= -3
Putting B = 3 in eq (2) and ignoring first term (because it is not possible to find value of A with given initial conditions) - we get
x(t) = - 6 cos 2t
==>
Answer:
No
Explanation:
Let the reference origin be location of ship B in the beginning. We can then create the equation of motion for ship A and ship B in term of time t (hour):
A = 12 - 12t
B = 9t
Since the 2 ship motions are perpendicular with each other, we can calculate the distance between 2 ships in term of t
![d = \sqrt{A^2 + B^2} = \sqrt{(12 - 12t)^2 + (9t)^2}](https://tex.z-dn.net/?f=d%20%3D%20%5Csqrt%7BA%5E2%20%2B%20B%5E2%7D%20%3D%20%5Csqrt%7B%2812%20-%2012t%29%5E2%20%2B%20%289t%29%5E2%7D)
For the ships to sight each other, distance must be 5 or smaller
![d \leq 5](https://tex.z-dn.net/?f=%20d%20%5Cleq%205)
![\sqrt{(12 - 12t)^2 + (9t)^2} \leq 5](https://tex.z-dn.net/?f=%5Csqrt%7B%2812%20-%2012t%29%5E2%20%2B%20%289t%29%5E2%7D%20%5Cleq%205)
![(12 - 12t)^2 + (9t)^2 \leq 25](https://tex.z-dn.net/?f=%2812%20-%2012t%29%5E2%20%2B%20%289t%29%5E2%20%5Cleq%2025)
![144t^2 - 288t + 144 + 81t^2 - 25 \leq 0](https://tex.z-dn.net/?f=144t%5E2%20-%20288t%20%2B%20144%20%2B%2081t%5E2%20-%2025%20%5Cleq%200)
![225t^2 - 288t + 119 \leq 0](https://tex.z-dn.net/?f=225t%5E2%20-%20288t%20%2B%20119%20%5Cleq%200)
![(15t)^2 - (2*15*9.6)t + 9.6^2 + 26.84 \leq 0](https://tex.z-dn.net/?f=%2815t%29%5E2%20-%20%282%2A15%2A9.6%29t%20%2B%209.6%5E2%20%2B%2026.84%20%5Cleq%200)
![(15t^2 - 9.6)^2 + 26.84 \leq 0](https://tex.z-dn.net/?f=%2815t%5E2%20-%209.6%29%5E2%20%2B%2026.84%20%5Cleq%200)
Since
then
![(15t^2 - 9.6)^2 + 26.84 > 0](https://tex.z-dn.net/?f=%2815t%5E2%20-%209.6%29%5E2%20%2B%2026.84%20%3E%200)
So our equation has no solution, the answer is no, the 2 ships never sight each other.