The further an object is from the centre of a planet, the lower it's gravitational force. Uranus had 14 times as much mass as earth, but it's also a lot bigger than earth. So assuming an object is on the surface of Uranus, it would be really far away from the centre of Uranus, therefore the gravitational force is less.
Hope this helps!
Answer:the velocity is zero, the acceleration is directed downward, and the force of gravity acting on the ball is directed downward.
Explanation:
When a ball is tossed vertically upwards, it reaches its maximum point. This maximum point is known as the maximum height of the ball. At this maximum height, its velocity is zero, its acceleration is directed downwards and the force of gravity acting in the ball is directed downwards towards the earth.
It does not it when put in the freezer it freezes the steam
Answer:
f_tympanum = 256 Hz.
Explanation:
The eardrum is the vibrating membrane of the human ear, it works by resonance, that is, an external stimulus (force) makes it vibrate, as the eardrum is extremely light it can vibrate at the same frequency of the incident sound.
Consequently if the incident vibration is f = 256 hz, the eardrum resonates at the same frequency
f_tympanum = 256 Hz.
As a reference the response of the eardrum goes from f = 20 Hz f = 20000 Hz
Answer:
1) λ = 24.7 cm, 2) f = 13.88 Hz, 3) L = 117.3 cm
Explanation:
1) This is a resonance process, that is, the wave going downwards will interfere with the wave going upwards.
This is a tube with one end closed and the other open, at the closed end there is a node and at the open end a belly, so the resonances are
L = λ / 4
λ = 4L 1st harmonic
λ = 4L / 3 third harmonic
λ = 4L / 5 fifth harmonic
λ = 4L / n ’ n’ odd number n ’= (2n +1)
the wavelength is requested for the eighth resonance n = 8, the corresponding prime number is
n ’= 2 8 +1
n ’= 17
we substitute
λ = 4 105/17
λ = 24.7 cm
2) the speed of the wave is related to the wavelength and frequency
v = λf
f = v /λ
f = 343 / 24.7
f = 13.88 Hz
3) the next resonance occurs for n = 9, so the prime number is
n ’= 2 9 +1
n ’= 19
L = n’ λ / 4
L = 19 λ / 4
We must suppose a value for the wavelength, if the wavelength is present in the tube and the length of the column increases, the resonance number increases
L = 19 24.7/4
L = 117.3 cm