Answer:
a) Ws = 2.548 J
b) Wf = 1.153 J
c) v = 1.923 m / s
Explanation:
a) The work done by the spring force
Ws = ½ * k * x²
Ws = ½ * 260 N/m *0.14² m
Ws = 2.548J
b) The increase in thermal energy can by find using
Et = Wf
Wf = µ * m *g * x
Wf = 0.42 * 2.0 kg *9.8 m/s² * 0.14m
Wf = 1.153 J
c) The speed just as the block reaches can by fin using
EK = Ws + Et
Ek = ( 2.548 + 1.153 ) J = 3.7 J
Ek = ½ * m * v²
v² = 2* Ek / m
v = √[2 * 3.7 J / 2.0 kg]
v = 1.923 m / s
Answer:
Water.
Explanation:
This means:
1) For the temperature of water to raise at any point to the next degree by 1°C, will require a specific heat capacity of 4.184 J/Kg°C
2) For the temperature of wood to raise at any point to the next degree by 1°C, will require a specific heat capacity of 1.760 J/Kg°C
Note that: specific heat is directly proportional to energy, therefore the higher the heat capacity, the higher the energy.
4.184 J/Kg°C is higher than 1.760 J/Kg°C, hence WATER needs more energy.
Answer:
Between 2.0 s and 4.0 s (B and C)
Between 5.0 s and 8.0 s (D and E)
Between 10.0 s and 11.0 s (F and G)
Explanation:
The graph shown in the figure is a velocity-time graph, which means that:
- On the x-axis, the time is plotted
- On the y-axis, the velocity is plotted
Therefore, this means that the object is not moving when the line is horizontal (because at that moment, the velocity is constant, so the object is not moving). This occurs in the following intervals:
Between 2.0 s and 4.0 s (B and C)
Between 5.0 s and 8.0 s (D and E)
Between 10.0 s and 11.0 s (F and G)
From the graph, it would be possible to infer additional information. In particular:
- The area under the graph represents the total distance covered by the object
- The slope of the graph represents the acceleration of the object
I can't read the ones on the top but, 7. Is D which you put lol and I believe what you put for 9. is right and 10. I believe your answer is H aka C lol Hope this helps!!! :D
The stretching force acting on the second wire, given the data is 588 N
<h3>Data obtained from the question</h3>
- Radius of fist wire (r₁) = 3.9×10⁻³ m
- Force of first wire (F₁) = 450 N
- Radius of second wire (r₂) = 5.1×10⁻³ m
- Force of second wire (F₂) =?
<h3>How to determine the force of the second wire</h3>
F₁ / r₁ = F₂ / r₂
450 / 3.9×10⁻³ = F₂ / 5.1×10⁻³
cross multiply
3.9×10⁻³ × F₂ = 450 × 5.1×10⁻³
Divide both side by 3.9×10⁻³
F₂ = (450 × 5.1×10⁻³) / 3.9×10⁻³
F₂ = 588 N
Learn more about spring constant:
brainly.com/question/9199238
#SPJ1