Answer:
im pretty sure it is 3.0 K
Explanation:
Answer:
0.12m/s
Explanation:
v=λf
Given that, λ = 12cm = 0.12m
T = 1second
(A period T is the time required for one complete cycle of vibration to pass a given point)
frequency 'f' is unknown but we can get frequency from f = 1/T = 1/1 = 1Hz
therefore, v= 0.12 × 1 = 0.12m/s
Answer:
∆h = 0.071 m
Explanation:
I rename angle (θ) = angle(α)
First we are going to write two important equations to solve this problem :
Vy(t) and y(t)
We start by decomposing the speed in the direction ''y''


Vy in this problem will follow this equation =

where g is the gravity acceleration

This is equation (1)
For Y(t) :

We suppose yi = 0

This is equation (2)
We need the time in which Vy = 0 m/s so we use (1)

So in t = 0.675 s → Vy = 0. Now we calculate the y in which this happen using (2)

2.236 m is the maximum height from the shell (in which Vy=0 m/s)
Let's calculate now the height for t = 0.555 s

The height asked is
∆h = 2.236 m - 2.165 m = 0.071 m