Answer:
- When an object experiences acceleration to the left, the net force acting on this object will also be to the left.
- If the mass of the object was doubled, it would experience an acceleration of half the magnitude
Explanation:
When an object experiences acceleration to the left, the net force acting on this object will also be to the left.
From Newton's second law of motion, the acceleration of the object is given as;
a = ∑F / m
a = -F / m
The negative value of "a" indicates acceleration to the left
where;
∑F is the net force on the object
m is the mass of the object
At a constant force, F = ma ⇒ m₁a₁ = m₂a₂
If the mass of the object was doubled, m₂ = 2m₁
a₂ = (m₁a₁) / (m₂)
a₂ = (m₁a₁) / (2m₁)
a₂ = ¹/₂(a₁)
Therefore, the following can be deduced from the acceleration of this object;
- When an object experiences acceleration to the left, the net force acting on this object will also be to the left.
- If the mass of the object was doubled, it would experience an acceleration of half the magnitude
Answer:
Lightning is seen earlier than the thunder because speed of light is more than the speed of sound. Therefore, even though both occurs as same time and place in the sky, lightning is seen earlier.
Answer:
Energy is transformed from potential to kinetic and vice versa
Explanation:
The energy is transformed from mechanical to kinetic energy when the object changes its position with respect to a reference point, where it loses height but increases its speed. When the object is at maximum height with respect to a reference point, it will have its maximum potential energy value. When the object passes through the reference point it will have potential energy equal to zero, but this energy will become kinetic energy.
The most characteristic and real example is that of a pendulum at one end, as can be seen in the attached image.
When the pendulum is located at the top end, as shown in Figure 1, at that point the maximum potential energy will be held. Then the pendulum is released and when it passes through the reference point and its height is zero, with respect to that point, all potential energy will have become kinetic energy in the same way at this point the maximum speed of the pendulum will be set.
Newton's first law states that every object will remain at rest or in uniform motion in a straight line unless compelled to change its state by the action of an external force
Answer:
v = √ 2e (V₂-V₁) / m
Explanation:
For this exercise we can use the conservation of the energy of the electron
At the highest point. Resting on the top plate
Em₀ = U = -e V₁
At the lowest point. Just before touching the bottom plate
Emf = K + U = ½ m v² - e V₂
Energy is conserved
Em₀ = Emf
-eV₁ = ½ m v² - e V₂
v = √ 2e (V₂-V₁) / m
Where e is the charge of the electron, V₂-V₁ is the potential difference applied to the capacitor and m is the mass of the electron