Answer:
Not possible
Explanation:
= longitudinal modulus of elasticity = 35 Gpa
= transverse modulus of elasticity = 5.17 Gpa
= Epoxy modulus of elasticity = 3.4 Gpa
= Volume fraction of fibre (longitudinal)
= Volume fraction of fibre (transvers)
= Modulus of elasticity of aramid fibers = 131 Gpa
Longitudinal modulus of elasticity is given by

Transverse modulus of elasticity is given by


Hence, it is not possible to produce a continuous and oriented aramid fiber.
It's either 3 or 4 I know this becuase I have read a book about electricity
Answer:
The set of frequencies of the electromagnetic Waves emitted by the atoms of an element is called emission spectrum.
Answer:
The following is an example of how humans can increase biodiversity
Provide Wildlife Corridors and Connections Between Green Spaces
Use Organic Maintenance Methods and Cut Back On Lawns
Use a Native Plant Palette and Plant Appropriately
Utilize Existing Green Space Connections
Be Mindful of Non-Native Predators
Answer with Explanation:
We are given that
Diameter of fighter plane=2.3 m
Radius=
a.We have to find the angular velocity in radians per second if it spins=1200 rev/min
Frequency=
1 minute=60 seconds
Angular velocity=
Angular velocity=
b.We have to find the linear speed of its tip at this angular velocity if the plane is stationary on the tarmac.

c.Centripetal acceleration=
Centripetal acceleration==