Answer:
s₁ = 0.022 m
Explanation:
From the law of conservation of momentum:

where,
m₁ = mass of hockey player = 97 kg
m₂ = mass of puck = 0.15 kg
u₁ = u₂ = initial velocities of puck and player = 0 m/s
v₁ = velocity of player after collision = ?
v₂ = velocity of puck after hitting = 48 m/s
Therefore,

negative sign here shows the opposite direction.
Now, we calculate the time taken by puck to move 14.5 m:

Now, the distance covered by the player in this time will be:

<u>s₁ = 0.022 m</u>
N
W E
S
Paula has gone 1 km east as the total displacement. The total distance would be 7 km. Why? Well, the difference between displacement and distance is displacement is directional which is why it’s included in velocity and not speed. However, distance is more broad and not as specific.
Answer:
3658.24m
Explanation:
Hello!
the first thing that we must be clear about is that the train moves with constant acceleration
A body that moves with constant acceleration means that it moves in "a uniformly accelerated motion", which means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.
When performing a mathematical demonstration, it is found that the equations that define this movement are as follows.

Vf = final speed
=160km/h=44.4m/s
Vo = Initial speed
=42.9km/h=11.92m/s
A = acceleration
=0.25m/s^2
X = displacement
solving

the distance traveled by the train is 3658.24m
I think that in order for work to be done, the object must move in the direction of the force and move over a distance.