<span>(Momentum is Zero) 0 = (26.0 kg + 55.0 kg)v + (5.40 kg)(+10.0 m/s)
</span>velocity = -.667 m/s
If 50 identical light bulbs are connected in series across
a single power source, then the voltage across each bulb
is ( 1/50 ) of the voltage delivered by the power source.
This is a Wheatstone bridge, and the ratio of R2 to R1 equals the ratio of Rx to R3. As a result, if R2 is increased, R3 should be reduced by a factor of two.
<h3>Explain Wheatstone bridge?</h3>
A Wheatstone bridge is a type of electrical circuit that is used to measure an unknown electrical resistance by balancing two legs of a bridge circuit, one of which contains the unknown component.
The Wheatstone bridge circuit can be used to compare an unknown resistance RX to others of known value, such as R1 and R2, which have constant values and R3 which can be variable.
If we connected a voltmeter, ammeter, or galvanometer between points C and D, and then changed resistor R3 until the meters read zero, the two arms would be balanced, and the value of RX (substituting R4) would be known as indicated.
To learn more about Wheatstone bridge refer to :
brainly.com/question/15225070
#SPJ4
Answer: D
Explanation:
Let us examine the given actions to see which ones generate heat and sound energy from mechanical energy.
A) Stretching a string.
The mechanical stretching creates tension in the string, which is released when the tension is removed. The generation of thermal or sound energy is minimal or negligible.
B) Squeezing a sponge ball
The sponge ball experiences compressive loading. This generates minimal or no heat and sound energy.
C) Throwing a ball upwards in the air
Air friction generates minimal or no heat at low velocities. At low velocities the pressure waves are too small to generate sound.
D) Striking a hammer on a nail.
A tremendous amount of force is applied over a small area to generate very high stresses that are in the plastic zone. A high amount of thermal energy is generated and the localized disturbance of the air generates audible sound.
This is the correct situation.
New rock get on top of old rock to form new layers of rock