Answer:
b) vary with the frequency of the light
Explanation:
The phone electric effect can be expressed as
K.E=(hv -W•)
Where K.E is the Kinectic energy
W• = work function of the metal
ν =frequency of the radiation
h = Planck's constat
Then, we can see that K.E is proportional linearly to "v" in the equation above.
Therefore, When light is directed on a metal surface, the kinetic energies of the photoelectrons vary with the frequency of the light
Answer:
The ratio is 9.95
Solution:
As per the question:
Amplitude, 
Wavelength, 
Now,
To calculate the ratio of the maximum particle speed to the speed of the wave:
For the maximum speed of the particle:

where
= angular speed of the particle
Thus

Now,
The wave speed is given by:

Now,
The ratio is given by:


Given the Hubble's constant, the approximate age of the universe is 5.88 × 10⁹ Years.
Given the data in the question;
Hubble's constant; 
Age of the universe; 
We know that, the reciprocal of the Hubble's constant (
) gives an estimate of the age of the universe (
). It is expressed as:

Now,
Hubble's constant; 
We know that;

so
![1\ Million\ light\ years = [9.46 * 10^{15}m] * 10^6 = 9.46 * 10^{21}m](https://tex.z-dn.net/?f=1%5C%20Million%5C%20light%5C%20years%20%3D%20%5B9.46%20%2A%2010%5E%7B15%7Dm%5D%20%2A%2010%5E6%20%3D%209.46%20%2A%2010%5E%7B21%7Dm)
Therefore;

Now, we input this Hubble's constant value into our equation;

Therefore, given the Hubble's constant, the approximate age of the universe is 5.88 × 10⁹ Years.
Learn more: brainly.com/question/14019680
Given :
A 120 kg box is on the verge of slipping down an inclined plane with an angle of inclination of 47º.
To Find :
The coefficient of static friction between the box and the plane.
Solution :
Vertical component of force :

Horizontal component of force(Normal reaction) :

Since, box is on the verge of slipping :

Therefore, the coefficient of static friction between the box and the plane is 1.07.
Hence, this is the required solution.
Answer:
Skateboard
Explanation:
Acceleration is change in velocity over time.
a = Δv / Δt
The airplane's acceleration is:
a = (1005 km/h − 1000 km/h) / 10 s
a = 0.5 km/h/s
The skateboard's acceleration is:
a = (5 km/h − 0 km/h) / 1 s
a = 5 km/h/s