Since the Earth is almost spherical in shape, we are actually to find first the volume of the spherical segment at a depth of 1,000 m. The radius of the Earth is 6,371,000 meters. The volume of a spherical segment is:
V = 1/3*πh²(3r - h)
Substituting the values and making sure the units is in mm,
V = 1/3*π(1000 m * 1000 mm/1 m)²[3(6,371,000 m * 1000 mm/1 m) - (1000 m * 1000 mm/1 m)]
V = 2×10²² mm³
Thus, the total amount of bacteria is:
2×10²² mm³ * 100 bacteria/1 mm³ = 2×10²⁴ bacteria
Answer:
change in internal energy 3.62*10^5 J kg^{-1}
change in enthalapy 5.07*10^5 J kg^{-1}
change in entropy 382.79 J kg^{-1} K^{-1}
Explanation:
adiabatic constant 
specific heat is given as 
gas constant =287 J⋅kg−1⋅K−1

specific heat at constant volume

change in internal energy 

change in enthalapy 

change in entropy



Answer:
True
Explanation:
In this particular case, the area of the graph represents the impulse.
In fact, impulse is defined as the change in momentum of an object:

Moreover, impulse is also defined as the product between the magnitude of the force acting on an object and the duration of the collision:

If we plot a graph of the force versus the time, if the force is constant then this graph will have a rectangular shape, and the area under the graph will simply be the product

which corresponds to the definition of impulse.
Answer:
5 meters per second
Explanation:
5m is the distance
5m west is the vector
5m per second is the velocity
5m per second west is unknown
Answer:
to make calculation more easy to get
Explanation:
if you are using chart or calculate Thermodynamic problems you will not never solve this problem with out using data table for thermodynamic