Answer:
Coefficient of static friction = 0.37
Explanation:
At the point the the quoll slides, quoll attains its maximum velocity.
So Ne = (mv^2)/r ....equa 1
And N =mg....equ 2
Where N vertical force of qoull acting on the surface, e = coefficient of friction, m=mass, g=9.8m/s^2, r =radius =1.6m, v= max velocity of quill = 2.4m/s
Sub equ 2 into equ 1
Mge= (mv^2)/r ...equa3
Simplfy equ3
e = v^2/(gr)...equ 4
Sub figures above
e = 5.76/(9.8*1.6)
e = 0.37
Answer:
7 km
Explanation:
53 km in 1 hour/ 60 minutes. .89 km a minute.
Answer:
It depends on the potential energy it has ontop of the ramp. The marble has the same potential energy was the kinetic energy without changing the ramp incline or moving it. What kinetic energy shows is what potential energy made it to be, so we look at how the ramp is placed. If the ramp is a steep incline the kinetic energy will be fast. It depends on the weight of the marble too. If the marble is heavy the potential energy will slowly tansition to kinetic energy while a light marble will transition to kinetic energy fast. But marbles are light so there we have it. It basically goes from potential energy to kinetic energy to thermal energy to potential energy. Make me brainliest pls :)
Explanation:
Answer:
1.697s
Explanation:
We use the second equation of free fall under gravity as follows;

Since the ball fell freely, u = 0m/s, therefore equation (1) reduces to

Given that h is the total height the ball falls through in time t seconds.
However, according to the stated problem the ball falls halfway in 1.2s, this simply implies that the ball falls through a distance of
in 1.2s. Hence we can write the following, given that
;

We can now proceed to find the time t for which it falls through h = 14.112m as follows;

According to Newton's second law of motion, Force is mass times the acceleration of the object.
It would be: F = m*a
Hope this helps!