Answer:
a)
, b)
, c) 
Explanation:
A turbine is a device which works usually in steady state and assumption of being adiabatic means no heat interactions between steam through turbine and surroudings and produce mechanical work from fluid energy. Changes in gravitational energy can be neglected. This system can be modelled after the First Law of Thermodynamics:

a) Change in kinetic energy

![\Delta \dot K = \frac{1}{2} \cdot \left(12.6\,\frac{kg}{s} \right) \cdot \left[\left(80\,\frac{m}{s} \right)^{2}-\left(50\,\frac{m}{s} \right)^{2}\right]](https://tex.z-dn.net/?f=%5CDelta%20%5Cdot%20K%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ccdot%20%5Cleft%2812.6%5C%2C%5Cfrac%7Bkg%7D%7Bs%7D%20%5Cright%29%20%5Ccdot%20%5Cleft%5B%5Cleft%2880%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D-%5Cleft%2850%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D%5Cright%5D)


b) Power output



c) Turbine inlet area
Turbine inlet area can be found by using the following expressions:






Answer:
The equation of equilibrium at the top of the vertical circle is:
\Sigma F = - N - m\cdot g = - m \cdot \frac{v^{2}}{R}
The speed experimented by the car is:
\frac{N}{m}+g=\frac{v^{2}}{R}
v = \sqrt{R\cdot (\frac{N}{m}+g) }
v = \sqrt{(5\,m)\cdot (\frac{6\,N}{0.8\,kg} +9.807\,\frac{kg}{m^{2}} )}
v\approx 9.302\,\frac{m}{s}
The equation of equilibrium at the bottom of the vertical circle is:
\Sigma F = N - m\cdot g = m \cdot \frac{v^{2}}{R}
The normal force on the car when it is at the bottom of the track is:
N=m\cdot (\frac{v^{2}}{R}+g )
N = (0.8\,kg)\cdot \left(\frac{(9.302\,\frac{m}{s} )^{2}}{5\,m}+ 9.807\,\frac{m}{s^{2}} \right)
N=21.690\,N
Answer:
A
Explanation:
A. The pencil is on the table in broad daylight
Answer:nah u took my points I take urs
Explanation:
The lithosphere is one of the four layers of the earth's interior. The lithosphere is the layer above the mantle of the earth and is the topmost part. Lithosphere includes a part of the mantle and the continental and oceanic crust.