Answer:
- 0.26
- 0.91
- 1.43
Step-by-step explanation:
given data
mean = 1.9 hours
standard deviation = 0.3 hours
solution
we get here first random movie between 1.8 and 2.0 hours
so here
P(1.8 < z < 2 )
z = (1.8 - 1.9) ÷ 0.3
z = -0.33
and
z = (2.0 - 1.9) ÷ 0.3
z = 0.33
z = 0.6293
so
P(-0.333 < z < 0.333 )
= 0.26
so random movie is between 1.8 and 2.0 hours long is 0.26
and
A movie is longer than 2.3 hours.
P(x > 2.3)
P(
>
)
P (z >
)
P (z > 1.333 )
= 0.091
so chance a movie is longer than 2.3 hours is 0.091
and
length of movie that is shorter than 94% of the movies is
P(x > a ) = 0.94
P(x < a ) = 0.06
so
P(
<
)
a = 1.43
so length of the movie that is shorter than 94% of the movies about 1.4 hours.
Answer:
$5400
Step-by-step explanation:
Gross income is any interest, wage etc(money received) given to someone which they account for before any deductions and tax. Fran will have to include all $5400 of her first quarterly payment into her gross income because there are no deductions yet and tax when you consider what is put in gross income. Fran would have earned this amount as a payment from the purchasing of the annuity as it serves as a payment back for purchasing an annuity which to Fran, is an investment.
I think it would be B i hope this helps
Answer:
(E) 0.71
Step-by-step explanation:
Let's call A the event that a student has GPA of 3.5 or better, A' the event that a student has GPA lower than 3.5, B the event that a student is enrolled in at least one AP class and B' the event that a student is not taking any AP class.
So, the probability that the student has a GPA lower than 3.5 and is not taking any AP classes is calculated as:
P(A'∩B') = 1 - P(A∪B)
it means that the students that have a GPA lower than 3.5 and are not taking any AP classes are the complement of the students that have a GPA of 3.5 of better or are enrolled in at least one AP class.
Therefore, P(A∪B) is equal to:
P(A∪B) = P(A) + P(B) - P(A∩B)
Where the probability P(A) that a student has GPA of 3.5 or better is 0.25, the probability P(B) that a student is enrolled in at least one AP class is 0.16 and the probability P(A∩B) that a student has a GPA of 3.5 or better and is enrolled in at least one AP class is 0.12
So, P(A∪B) is equal to:
P(A∪B) = P(A) + P(B) - P(A∩B)
P(A∪B) = 0.25 + 0.16 - 0.12
P(A∪B) = 0.29
Finally, P(A'∩B') is equal to:
P(A'∩B') = 1 - P(A∪B)
P(A'∩B') = 1 - 0.29
P(A'∩B') = 0.71