A parallel circuit is sometimes called a current divider because current splits up among all the resistors in the parallel circuit. In addition, the current through the branches is inversely proportional to the resistance of the branch. If the resistance in each branch is kept constant but the voltage is decreased, the current will decrease.
The answer is no, it would be impossible to see the beginning of the universe
Answer:
a. 
b. 
c. 
Explanation:
First, look at the picture to understand the problem before to solve it.
a. d1 = 1.1 mm
Here, the point is located inside the cilinder, just between the wire and the inner layer of the conductor. Therefore, we only consider the wire's current to calculate the magnetic field as follows:
To solve the equations we have to convert all units to those of the international system. (mm→m)

μ0 is the constant of proportionality
μ0=4πX10^-7 N*s2/c^2
b. d2=3.6 mm
Here, the point is located in the surface of the cilinder. Therefore, we have to consider the current density of the conductor to calculate the magnetic field as follows:
J: current density
c: outer radius
b: inner radius
The cilinder's current is negative, as it goes on opposite direction than the wire's current.




c. d3=7.4 mm
Here, the point is located out of the cilinder. Therefore, we have to consider both, the conductor's current and the wire's current as follows:

As we see, the magnitud of the magnetic field is greater inside the conductor, because of the density of current and the material's nature.
Answer:
v = 23.66 m/s
Explanation:
recall that one of the equations of motion may be expressed:
v² = u² + 2as,
Where
v = final velocity (we are asked to find this)
u = initial velocity = 0 m/s since we are told that it starts from rest
a = acceleration = 0.56m/s²
s = distance traveled = given as 500m
Simply substitute the known values into the equation:
v² = u² + 2as
v² = 0 + 2(0.56)(500)
v² = 560
v = √560
v = 23.66 m/s