<span> When headed uphill at a </span>curb<span>, turn the front </span>wheels<span> away from the </span>curb<span> and let </span>your vehicle<span> roll backwards slowly until the rear part of the front </span>wheel<span> rests against the </span>curb<span> using it as a block.</span>
Answer:
Explanation:
Given

mass of core
Average specific heat 
And rate of increase of temperature =
Now
P=

Thus ![\frac{\mathrm{d}T}{\mathrm{d} t}=[tex]\frac{1.60\times 10^5\times 0.3349}{150\times 10^6}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cmathrm%7Bd%7DT%7D%7B%5Cmathrm%7Bd%7D%20t%7D%3D%5Btex%5D%5Cfrac%7B1.60%5Ctimes%2010%5E5%5Ctimes%200.3349%7D%7B150%5Ctimes%2010%5E6%7D)

When you touch an object and heat flows OUT of it, INTO your finger, you say the object feels hot.
When you touch an object and heat flows INTO it, OUT of your finger, you say the object feels cold.
If the object has the same temperature as your finger ... <em>around the mid-90s</em> ... then no heat flows in or out of your finger when you touch the object, and the object doesn't feel hot or cold.
<span> Second-level consumer </span>