Sunday, July 20, marked 45 years since the United States put the first two astronauts safely on the moon. The cost for the Mercury, Gemini and Apollo programs was more than $25 billion at the time more like $110 billion in today’s world. The ensuing U.S. space efforts have cost an additional $196 billion for the shuttle and $50 billion for the space station. NASA’s total inflation-adjusted costs have been more than $900 billion since its creation in 1958 through 2014 (more than $16 billion per year). Looking back, have we gotten our money’s worth from the investment?
IamSugarBee
First, find the work done. W = f*d, so 160 N * 1 m = 160 J. Then divide the work by the time to get the power. P = W/t. P = 160 J / 0.5 s = 320 W.
The answer is 320 W. Hope this helps, and have a great day! :)
C.
Because it’s falling it has acceleration in the y direction. If you have acceleration, you usually also have velocity, and since kinetic energy is KE= Mv^2 you know you have it. It also has potential energy because it has some height to it, and PE= Mgh.
Answer:
the needle will direct its North South according to the magnetic field of current carrying wire.
Explanation:
A current carrying wire always has a magnetic field around it, in circular loops. This magnetic field will be either clockwise or anticlockwise depending on the direction of current.
Right hand rule tells the direction. Place the current carrying wire in your right hand with thumb pointing the direction of current. Curl of the fingers tell the direction of current.
When the needle gets in the vicinity of the field, its poles aligns itself with the field. (previous position of the compass needle has no effect on its position in the field). The north pole and south pole will be set in the direction of magnetic field.
The distance between the needle and wire does effect the strength (accuracy) of the needle position. Strong field will create strong deflection of the needle whereas when the distance from wire increases, field weakens, thus the deflection of needle will be weak.