Answer:
The centre of the earth is harder to study than the centre of the sun." Temperatures in the lower mantle the reach around 3,000-3,500 degrees Celsius and the barometer reads about 125 gigapascals, about one and a quarter million times atmospheric pressure.
Explanation:
Answer: A is your best answer.
Explanation:
It should be A because the when the ball bounces on the ground the ground will give it force to bounce again but also it wont go as high as it first did. Hope this helps:))
The emerging velocity of the bullet is <u>71 m/s.</u>
The bullet of mass <em>m</em> moving with a velocity <em>u</em> has kinetic energy. When it pierces the block of wood, the block exerts a force of friction on the bullet. As the bullet passes through the block, work is done against the resistive forces exerted on the bullet by the block. This results in the reduction of the bullet's kinetic energy. The bullet has a speed <em>v</em> when it emerges from the block.
If the block exerts a resistive force <em>F</em> on the bullet and the thickness of the block is <em>x</em> then, the work done by the resistive force is given by,

This is equal to the change in the bullet's kinetic energy.

If the thickness of the block is reduced by one-half, the bullet emerges out with a velocity v<em>₁.</em>
Assuming the same resistive forces to act on the bullet,

Divide equation (2) by equation (1) and simplify for v<em>₁.</em>

Thus the speed of the bullet is 71 m/s
Answer:
D)evaluating a solution
Explanation:
In this scenario, the next logical step would be evaluating a solution. This is because Jasper and Samantha have already identified the problem/need which is that the robot needs to be able to move a 10-gram weight at least 2 meters and turn in a circle. They also designed and implemented a solution because they have already built the robot. Therefore the only step missing is to evaluate and make sure that the robot they built is able to complete the requirements.
Answer:
The final velocity of the ball is 39.2 m/s.
Explanation:
Given that,
A ball is dropped from rest from a high window of a tall building.
Time = 4 sec
We need to calculate the final velocity of the ball
Using equation if motion

Where, v = final velocity
u = initial velocity
g = acceleration due to gravity
t = time
Put the value into the formula


Hence, The final velocity of the ball is 39.2 m/s.