There are 3
Matter can exist in one of three main states: solid, liquid, or gas.
Solid matter is composed of tightly packed particles. ...
Liquid matter is made of more loosely packed particles. ...
Gaseous matter is composed of particles packed so loosely that it has neither a defined shape nor a defined volume.
Explanation:
Precision represents that how close the different measurements of the sample one take are to one another.
- One can increase the precision in lab by paying attention to each and every detail.
- Usage of the equipment properly and also increasing the sample size.
-
Ensuring that the equipment is calibrated properly. They should be clean and functioning. Using equipment which is not functioning correctly can cause results to swing wildly and also bits of the debris stuck to the equipment can influence the measurements of the mass and the volume.
- Each measurement must be taken multiple times, especially if experiments in which combining of the substances in specific amounts is involved.
Refer to the figure shown below.
Let m₁ and m₂ e the two masses.
Let a = the acceleration.
Let T = tension over the frictionless pulley.
Write the equations of motion.
m₂g - T = m₂a (1)
T - m₁g = m₁a (2)
Add equations (1) and (2).
m₂g - T + T - m₁g = (m₁ + m₂)a
(m₂ - m₁)g = (m₁ + m₂)a
Divide through by m₁.
(m₂/m₁ - 1)g = (1 + m₂/m₁)a
Define r = m₂/m₁ as the ratio of the two masses. Then
(r - 1)g = (1 +r)a
r(g-a) = a + g
r = (g - a)/(g + a)
With = 2 ft/s from rest, the acceleration is
a = 2/32.2 = 0.062 ft/s²
Therefore
r = (32.2 - 0.062)/(32.2 + 0.062) = 0.9962
Answer:
The ratio of masses is 0.9962 (heavier mass divided by the lighter mass).
I actually don't know. i speak english.
Bulbs c and b would still be screwed in if they were in to begin with and bulbs A, D, and E. would be unscrewed