Answer:
Option D. 5.45 Ω
Explanation:
From the question given above, the following data were obtained:
Resistance 1 (R₁) = 10 Ω
Resistance 2 (R₂) = 20 Ω
Resistance 3 (R₃) = 30 Ω
Voltage (V) = 120 V
Equivalent resistance (R) =?
The equivalent resistance can be obtained as follow:
1/R = 1/R₁ + 1/R₂ + 1/R₃
1/R = 1/10 + 1/20 + 1/30
Find the least common multiple (lcm) of 10, 20 and 30. The result is 60
Divide 60 by each of the denominators and multiply by their numerators respectively. We have:
1/R = (6 + 3 + 2)/60
1/R = 11/60
Invert
R = 60/11
R = 5.45 Ω
Thus, the equivalent resistance in the circuit is 5.45 Ω
Answer:
The nail will stick to the bar magnet because it will become magnetized, and it's metal. The presence of the nearby north pole rearranges the magnetic domains inside the steel so that their south poles all point toward the north pole of the permanent magnet. As a result, the other end of the nail becomes a north pole.Magnets attract iron due to the influence of their magnetic field upon the iron. ... When exposed to the magnetic field, the atoms begin to align their electrons with the flow of the magnetic field, which makes the iron magnetized as well. This, in turn, creates an attraction between the two magnetized objects.
The answer is the option c. generator. Generator is a machine that
converts mechanical energy into electricity. The way it is made is
because the mechanical movement may be transformed in rotation of
magnets placed inside a coiled wire, and this induces the movement of
electrons through the coiled wire. As you know electricity is the flow
of electrons.