Answer:
284.4233 N/m
Explanation:
k = Spring constant
x = Compression of spring = 14.5 cm
U = Potential energy = 2.99 J
The potential energy of a spring is given by

Rearranging to get the value of k

The spring constant is 284.4233 N/m
<h3><u>Answer;</u></h3>
D) Standing wave
<h3><u>Explanation;</u></h3>
- Standing wave also called stationary wave is a wave which oscillates in time but whose peak amplitude profile does not move in space.
- A standing wave pattern is a vibrational pattern created within a medium when the vibrational frequency of the source causes reflected waves from one end of the medium to interfere with incident waves from the source.
- Examples of standing waves include the vibration of a violin string and electron orbitals in an atom.
Answer:
c: long and thin resistor.
Explanation:
The resistance of a resistor is given by:
R = ρ*L/A
where:
R = resistance
ρ = resistivity (depends on the material)
L = length of the material
A = cross-sectional area of the material
We can see that the length is on the numerator, which means that if we increase the length, then the resistance is increased.
We also can see that the cross-sectional area is on the denominator, then if we increase the area (for example, with a ticker resistor) the resistance decreases.
Then if we want to maximize the resistance, we need to have a long and thin resistor, so the correct answer is c.
Answer:
a. 2143 turns/m
b. 111.5 m
Explanation:
a. The minimum number of turns per unit length (N/L) can be found using the following equation:


Hence, the minimum number of turns per unit length is 2143 turns/m.
b. The total length of wire is the following:

Since each turn has length 2πr of wire, the total length is:

Therefore, the total length of wire required is 111.5 m.
I hope it helps you!