Batteries supply electrons to the circuit by releasing negatively charged atoms or ions. These ions are produced by the batteries through a chemical reaction that spontaneously occurs within the battery. So the negative end of the battery pushes the ions towards the positive end of the circuit with the help of the voltage. This is why eventually, batteries "run out" when the electrode is used up and the chemical reaction can no longer continue.
5m
Explanation:
Given parameters:
Weight of object = 50N
Work done in lifting object = 250J
Unknown:
Vertical height = ?
Solution:
The work done on an object is the force applied to lift a body in a specific direction.
Work done = force x distance
Weight is a force in the presence of gravity;
Work done = weight x height of lifting
Height of lifting = 
Height of lifting =
= 5m
The vertical height through which the object was lifted is 5m
learn more:
Work done brainly.com/question/9100769
#learnwithBrainly
Answer:
334.314 (kJ)
Explanation:
1) the formula for the required energy is: Q=c*m(Bp-t), where c - 4100 J/kg*C; m - 0.9 kg; Bp - 100.6 C; t - 10 C.
2) according to the formula above:
Q=4100*0.9*(100.6-10)=41*9*906=334314 (J).
Answer:
This is due to a relative decrease in atmospheric pressure in high places.
Explanation:
Given that atmospheric pressure decreases at the higher point or ground, this reduced atmospheric pressure, however, will be unable to contain the Mercury in the barometer tube.
Therefore, at the top of the mountain where the air pressure is low, the barometer reading ultimately goes down.
Hence, the level of mercury falls in a barometer while taking it to a mountain "due to a relative decrease in atmospheric pressure in high places."
Answer:
a)
, b)
, c) 
Explanation:
a) The capacitance of two parallel plates capacitor with dielectric is given by the following expression:

Where:
- Dielectric constant.
- Vaccum permitivity.
- Plate area.
- Distance between plates.
Hence, the capacitance of the system is:



b) The charge can be found by using the definition of capacitance:




c) The energy stored in the charged capacitor is:



