Given :
Molarity of sulfuric acid solution is 3.0 M.
Amount of sulfuric acid present in solution is 9.809 g.
To Find :
The volume of solution.
Solution :
We know, molarity is given by :

Therefore, volume required is 33.33 ml .
Answer:
Here is one way: Add water to the mixture. Only the sugar dissolves. This is a physical change.
Explanation:
The sugar would dissolve in water. You could then pour off the solution and wash the remaining sand with a bit more water. Heat the water to evaporate it from the sugar, and the two are separated.
Ca + 2HCl = CaCl₂ + H₂
c=4.50 mol/l
v=2.20 l
n(HCl)=cv
m(Ca)/M(Ca)=n(HCl)/2
m(Ca)=M(Ca)cv/2
m(Ca)=40g/mol·4.50mol/l·2.20l/2=198 g
198 grams of Ca are needed
Answer:
The right solution is "-602.69 KJ heat".
Explanation:
According to the question,
The 100.0 g of carbon dioxide:
= 
= 
We know that 16 moles of
formation associates with -11018 kJ of heat, then
0.8747 moles
formation associates with,
= 
= 
=
<span>Tf is the freezing point of the solution(the solvent plus solute).
T*f is the freezing point of the pure solvent(without solute)
i is the van't Hoff factor.It is approximately the number of particles in solution that are made for each particle of the solute that is placed into solution.Therefore, for nonelectrolytes, i = 1.
Kf is the freezing point depression constant.For water, Kf = 1.86 Degree C/m, or 1.86 Degree C.kg/mol.
Tf is -1.58 Degree C</span>