Answer:
1/3p0
Explanation:
The combined gas law:
P1V1/T1 = P2V2/T2, where P, V and T are Pressure, Volume, and Temperature. Temperature must always be in Kelvin. The subscriopts 1 and 2 are for initial (1) and final (2) conditions.
In this case, temperature is constant (adiabatically). V1 = 2.0L and V2 = 6.0L. I'll assume P1 = p0.
Rearrange the combined gas law to solve for final pressure, P2:
P1V1/T1 = P2V2/T2
P2 = P1*(V1/V2)*(T2/T1) [Note how I've arranged the volume and temoperature terms - as ratios. This helps us understand what the impact of raising or lowering one on the variables will do to the system].
No enter the data:
P2 = P1*(V1/V2)*(T2/T1): [Since T2 = T1, the (T2/T1) terms cancels to 1.]
P2 = p0*(2.0L/6.0L)*(1)
P2 = (1/3)p0
The final pressure is 1/3 the initial pressure.
Answer:
tell his family about how he's manipulative or make him realize that even if you guys are still together you don't have feelings anymore
Unit of M is also mole/L, where mole is the moles of solute and L is the volume of the solution. The latter is given: 158 mL or 0.158 L. So we need to find out the moles of NH4Br.
Moles of NH4Br = Mass of NH4Br/molar mass of NH4Br = 17.0g/(14+1*4+79.9)g/mol = 0.1736 mole.
So, the molarity of the solution = 0.1736mole/0.158L = 1.10 mole/L = 1.10 M
Answer:
5. The excited players celebrated because they won the game. 6. Everyone at the birthday party ate the delicious birthday cake is the question
Explanation:
These organs belong to the nervous system