Answer:
Answer is c.
Explanation:
when you mix sugar with water,the sugar dissolves to make a transparent solution.
I hope it's helpful!
You know that you can just google it right? It has this converter.
Answer:
I would say, what helps me is really paying attention in class and asking questions, also making sure you study for upcoming test's and quizzes and completely assingments on time
Explanation:
Answer:
Contents Home Courses University of California Davis UCD Chem 2C: General Chemistry III UCD Chem 2C: Larsen Text Unit 4: Chemical Kinetics Expand/collapse global location
4.7: Collision Theory
Last updatedSep 3, 2020
4.6: Using Graphs to Determine (Integrated) Rate Laws
4.8: Temperature and Rate
picture_as_pdf
Readability
Donate
Learning Objectives
Molecules must collide in order to react.
In order to effectively initiate a reaction, collisions must be sufficiently energetic (kinetic energy) to break chemical bonds; this energy is known as the activation energy.
As the temperature rises, molecules move faster and collide more vigorously, greatly increasing the likelihood of bond breakage upon collision.
Collision theory explains why different reactions occur at different rates, and suggests ways to change the rate of a reaction. Collision theory states that for a chemical reaction to occur, the reacting particles must collide with one another. The rate of the reaction depends on the frequency of collisions. The theory also tells us that reacting particles often collide without reacting. For collisions to be successful, reacting particles must (1) collide with (2) sufficient energy, and (3) with the proper orientation.
mark me as brainly
Answer:
the entropy change for the surroundings when 1.62 moles of CH4(g) react at standard conditions is −8.343 J/K
Explanation:
The balanced chemical equation of the reaction in the question given is:

Using standard thermodynamic data at 298K.
The entropy of each compound above are listed as follows in a respective order.
Entropy of (CH4(g)) = 186.264 J/mol.K
Entropy of (O2(g)) = 205.138 J/mol.K
Entropy of (CO2(g)) = 213.74 J/mol.K
Entropy of (H2O(g)) = 188.825 J/mol.K
The change in Entropy (S) of the reaction is therefore calculated as follows:


= -5.15 J/mol.K
Given that :
the number of moles = 1.62 of CH4(g) react at standard conditions.
Then;
The change in entropy of the rxn 
= −8.343 J/K