Answer:
law of conservation of mass
Explanation:
self explanatory
<span>Solubility product constant (Ksp) is </span>applied to the saturated ionic solutions<span> which are in equilibrium with its
solid form. The solid is partially dissociated into its ions.</span><span>
For the BaF, the dissociation as follows;
BaF</span>₂(s) ⇄ Ba²⁺(aq)
+ 2F⁻(aq)
<span>
Hence,
Ksp = [Ba</span>²⁺(aq)] [F⁻(aq)]²
Answer:
54 days
Explanation:
We have to use the formula;
0.693/t1/2 =2.303/t log Ao/A
Where;
t1/2= half-life of phosphorus-32= 14.3 days
t= time taken for the activity to fall to 7.34% of its original value
Ao=initial activity of phosphorus-32
A= activity of phosphorus-32 after a time t
Note that;
A=0.0734Ao (the activity of the sample decreased to 7.34% of the activity of the original sample)
Substituting values;
0.693/14.3 = 2.303/t log Ao/0.0734Ao
0.693/14.3 = 2.303/t log 1/0.0734
0.693/14.3 = 2.6/t
0.048=2.6/t
t= 2.6/0.048
t= 54 days
Whenever the fuel is being used up, a star explodes and the energy leakage from a star's core ceases.
Explanation:
The dying star expands in the "Red Giant," before even the inevitable collapse starts, due to nuclear reactions just outside of the core.
It becomes a white dwarf star when the star has almost the same density as the Sun. If it's much larger, a supernova explosion could take place and leave a neutron star away. However, if it is very large–at least three times the Sun's mass–the crumbling core of the star, nothing will ever stop it from crumbling. The star is imploding into a black hole, an endless gravitational loop in space.