<span>From the point of view of the astronaut, he travels between planets with a speed of 0.6c. His distance between the planets is less than the other bodies around him and so by applying Lorentz factor, we have 2*</span>√1-0.6² = 1.6 light hours. On the other hand, from the point of view of the other bodies, time for them is slower. For the bodies, they have to wait for about 1/0.6 = 1.67 light hours while for him it is 1/(0.8) = 1.25 light hours. The remaining distance for the astronaut would be 1.67 - 1.25 = 0.42 light hours. And then, light travels in all frames and so the astronaut will see that the flash from the second planet after 0.42 light hours and from the 1.25 light hours is, 1.25 - 0.42 = 0.83 light hours or 49.8 minutes.
Vas happenin!
The third one makes no since because the clouds carry the rain. It isn’t always cold when it’s going to rain
The fourth one is a good one
The second one again it’s not always cold when it’s raining
The first one could be it also
Hmmm I would go with the last one
Sorry if it’s wrong
The answer would 0. The reasoning of this is because freezing point in celsius is always 0 degrees but in fahrenheit the freezing point is 32 degrees.
Answer:
Hope this helps u, pls mark me brainlist
Explanation:
The sun emits shortwave radiation because it is extremely hot and has a lot of energy to give off. Once in the Earth's atmosphere, clouds and the surface absorb the solar energy. The ground heats up and re-emits energy as longwave radiation in the form of infrared rays.