<u>Answer</u>
The combined displacement is 2km north
<u>Explanation</u>
Since displacement is a vector quantity, we take into account the direction.
Good for us all the displacement vectors are in the same dimension, so we can make north positive and south negative or vice-versa.
We now add to obtain,

This will simplify to

Therefore the combined displacement is 2km north
Answer:
= 7.07 m
Explanation:
The Tarzan reaches bottom of swing after descending 2.5 m,
change in his potential energy equals his kinetic energy at bottom of swing
m g h = (1/2) m v² ,
hence speed v of Tarzan at bottom of swing is given as
v = ( 2 g h )1/2
= ( 2 × 9.8 × 2.5 )1/2
= 7 m/s
At the bottom of swing, if the vine breaks, then he is moving with horizontal velocity 7 m/s in gravitational field.
If vertical distance from ground to bottom of swing is 5 m, then time t for Tarzan to reach ground is given by
S = (1/2)g t2 or t = (2S/g)1/2
= ( 2 × 5 / 9.8 )1/2
= 1.01 s
Horizontal distance traveled by Tarzan = 1.01 × 7
= 7.07 m
Answer:
Normal force = 8.75 N
Explanation:
given,
frictional force between the steel spatula and the Teflon frying pan=0.350 N
coefficient of friction between material =0.04
normal force = ?
using formula,
Frictional force = coefficient of friction × normal force


Normal force = 8.75 N
Answer:
v = 2591.83 m/s
Explanation:
Given that,
The electric field is 1.27 kV/m and the magnetic field is 0.49 T. We need to find the electron's speed if the fields are perpendicular to each other. The magnetic force is balanced by the electric force such that,

So, the speed of the electron is 2591.83 m/s.
Divide (25,000) by (the number of miles you can walk in 1 hour).
The answer you get is the number of hours it would take you to walk around the Earth once, IF you were able to walk on water too.