With the same block-spring system from above, imagine doubling the displacement of the block to start the motion. By what factor
would the following change?
A. Kinetic energy when passing through the equilibrium position.
B. Speed when passing through the equilibrium position.
1 answer:
Answer:
A) K / K₀ = 4 b) v / v₀ = 4
Explanation:
A) For this exercise we can use the conservation of mechanical energy
in the problem it indicates that the displacement was doubled (x = 2xo)
starting point. At the position of maximum displacement
Em₀ = Ke = ½ k (2x₀)²
final point. In the equilibrium position
= K = ½ m v²
Em₀ = Em_{f}
½ k 4 x₀² = K
(½ K x₀²) = K₀
K = 4 K₀
K / K₀ = 4
B) the speed value
½ k 4 x₀² = ½ m v²
v = 4 (k / m) x₀
if we call
v₀ = k / m x₀
v = 4 v₀
v / v₀ = 4
You might be interested in
Answer:
Unlike a gas, plasma can conduct electricity and respond to magnetism. That's because plasma contains charged particles called ions.
Answer:
allows for better thermal equilibrium
Explanation:
Due to the cone shape, most of the liquid will be closer to the bottom than the top. The large surface area of the bottom allows for faster heating.
Answer:

Explanation:
We know that the tangent function relates the angle of the right triangle that forms the hot air balloon rising:

Differentiating (1) with respect to time, we get:

since x is a constant value. Replacing:

Answer:
40 centimeters
Explanation:
I would say that the answer is C