Answer:
Failure rate = 20%
MTBF = 880 hours
Explanation:
given data
batteries = 10
tested = 200 hours
one failed = 20 hours
another fail at = 140 hours
solution
we know that Mean Time between Failures is express as = (Total up time) ÷ (number of breakdowns) ....................1
so here Total up time will be
Total up time = 200 × 10
Total up time = 2000
and here
Number of breakdown = 1 at 20 hour and another at 140 hour = 2
so it will be = (Total up time) ÷ (number of breakdowns) .......2
=
= 1000
so here gap between occurrences is
gap between occurrences= 140 - 20
gap between occurrences = 120 hour
and
MTBF will be
MTBF = 1000 - 120
MTBF = 880 hours
and
Failure rate (FR) will be
Failure rate (FR) = 1 ÷ MTBF ................3
Failure rate (FR) = R÷T ......................4
as here R is the number of failures and T is total time
so Failure rate (FR) = 20%
Answer:
B) Gets smaller
Explanation:
The difference of phase between current and voltage in a AC circuit is the phase angle and it depends on the value of Z ( circuit impedance)
Z = R + X where R is the resistive component and X the reactance component, which is due either to a presence of an inductor or a capacitor. In any case the total impedance depends on R the resistive, and the phase angle φ is:
tan⁻¹ φ = X/R
Have a look to a pure capactive circuit (we are talking about AC current) in this case current leads voltage by 90⁰. If we add a resistor in the circuit the current still will lead a voltage but in this condition the phase angle will be smaller,
If R increase, X/R decrease and tan⁻¹ φ also decrease
Answer:
a) k = 2231.40 N/m
b) v = 0.491 m/s
Explanation:
Let k be the spring force constant , x be the compression displacement of the spring and v be the speed of the box.
when the box encounters the spring, all the energy of the box is kinetic energy:
the energy relationship between the box and the spring is given by:
1/2(m)×(v^2) = 1/2(k)×(x^2)
(m)×(v^2) = (k)×(x^2)
a) (m)×(v^2) = (k)×(x^2)
k = [(m)×(v^2)]/(x^2)
k = [(3)×((1.8)^2)]/((6.6×10^-2)^2)
k = 2231.40 N/m
Therefore, the force spring constant is 2231.40 N/m
b) (m)×(v^2) = (k)×(x^2)
v^2 = [(k)(x^2)]/m
v = \sqrt{ [(k)(x^2)]/m}
v = \sqrt{ [(2231.40)((1.8×10^-2)^2)]/(3)}
= 0.491 m/s
The work done on the sail is 600 J
Explanation:
The work done to lift the sail is equal to the gain in gravitational potential energy of the sail, therefore is:

where
m is the mass of the sail
g is the acceleration of gravity
(mg) is the weight of the sail
is the change in height of the sail
In this problem we have
mg = 150 N (weight)

Substituting, we find the work done:

Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly
Answer:
θ = 225 rad
Explanation:
given data
angle = 25 rad
to find out
angular velocity after 3t?
solution
let angular acceleration α in t
θ = ω × t + 0.5 × α × t² ........................1
here ω = 0 (initial velocity )
so put this value here
25 = 0 + 0.5 × α × t² ..........................2
α = 25 ÷ (0.5 t²)
α = 50 ÷ t² .........................3
now here we take in 3t
θ = ω × 3t + 0.5 × α × (3t)²
for ω = 0
θ = 0 + 0.5 × α × 9t²
now put value in eq 2
so
θ = (0.5) × (50 ÷ t²) × (3t)²
θ = 25 × 9
θ = 225 rad