Explanation:
It is given that,
Mass of golf club, m₁ = 210 g = 0.21 kg
Initial velocity of golf club, u₁ = 56 m/s
Mass of another golf ball which is at rest, m₂ = 46 g = 0.046 kg
After the collision, the club head travels (in the same direction) at 42 m/s. We need to find the speed of the golf ball just after impact. Let it is v.
Initial momentum of golf ball, 
After the collision, final momentum 
Using the conservation of momentum as :


v = 63.91 m/s
So, the speed of the golf ball just after impact is 63.91 m/s. Hence, this is the required solution.
Answer:
Which sentence from the passage shows that the function of the river depicted here has carried through to modern times?
Explanation:
Which sentence from the passage shows that the function of the river depicted here has carried through to modern times?
Answer:

Explanation:
To solve this problem, we can use the following suvat equation:

where
is the vertical displacement of the frog
is the initial vertical velocity
t is the time
a is the acceleration
We have chosen this formula because apart from
, all the other quantities are known. In fact:
is the vertical displacement
t = 2 s is the total time of flight
is the acceleration due to gravity (negative because it is downward)
Therefore, solving for
, we find the initial velocity of the frog:

Answer:
The mission will help scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth.
Explanation:
Hope this helps :)
Unless if all forces cancel each other out , the object will no longer be in equilibrium