Answer: 10.58 C has flowed during the lightning bolt
Explanation:
Given that;
Time of flow t = 1.2 × 10⁻³
perpendicular distance r = 21 m
Magnetic field B = 8.4 x 10⁻⁵ T
Now lets consider the expression for magnetic field;
B = u₀I / 2πr
the current flow is;
I = ( B × 2πr ) / u₀
so we substitute
I = ( (8.4 x 10⁻⁵) × 2 × 3.14 × 21 ) / 4π ×10⁻⁷
= 0.01107792 / 0.000001256
= 8820 A
Hence the charge flows during lightning bolt will be;
q = It
so we substitute
q = 8820 × 1.2 × 10⁻³
q = 10.58 C
therefore 10.58 C has flowed during the lightning bolt
The magnitude of vector b is 8.58 Unit.
Since both the vectors a and b are perpendicular to each other, so we can apply the Pythagoras theorem to calculate the magnitude of the vector b.
Applying the Pythagoras theorem
(a-b)^2=a^2+b^2
15^2=12.3^2-b^2
b=8.58 unit
Therefor the magnitude of the vector b is 8.58 unit.
A. very small objects behave like like particles.
Answer:
As the sound approaches, it gets louder (simply because you're closer to the source), and has a higher pitch. Then, as it passes, the sound suddenly dips down, and as it drives away you hear a lower pitch, plus a decreasing volume as the engine gets farther and farther away.
Explanation:
Answer:
The waves will increase in frequency
Explanation:
As the young girl moves her hand back and forth faster, it will be observed that number of back and forth motions increase every second. Also the distance between crest and trough of the wave (wavelength) will be reduced as she moves her hand back and forth faster.
Frequency = number of turns (moves) per second
The waves will increase in frequency since there will be more number of back and forth motions in every second.
Also,
The distance between crest and trough will be reduced, which implies that there will be decrease in waves wavelength.
This can also be verified using wave equation;
V = Fλ
At constant velocity,
F ∝ ¹/λ
Thus, decrease in wavelength will cause increase in frequency of the waves.
The right answer is : The waves will increase in frequency