1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
romanna [79]
3 years ago
6

Hockey puck B rests on a smooth ice surface and is struck by a second puck A, which has the same mass. Puck A is initially trave

ling at 14.6 and is deflected 28.0 from its initial direction. Assume that the collision is perfectly elastic.
a)Find the final speed of the puck B after the collision.
b)Find the final speed of the puck A after the collision.
c)Find the direction of B's velocity after the collision.
Physics
1 answer:
Marina86 [1]3 years ago
4 0

Answer:

a.v_{b2}=6.8544 \ m/s\\\\b. v_{a2}=12.891 \ m/s\\\\c. \theta _b=62\textdegree

Explanation:

Puck A's initial speed is v_a_1=14.6m/s and move in a direction \theta_b=28.0\textdegree after the collision.

#P_1=P_2 since there's no external force on the system(P=mv).

#The collision equation can be written as;

m_av_a_1+m_bv_b_1=m_av_a_2+m_bv_b_2

The kinetic energies before and after the collision are expressed as:

K_a_1+K_{b1}=K_a_2+K_{b2}, \ K=0.5mv^2

0.5m_av_a_1+0.5m_b(0)=0.5m_av_a_2+0.5m_bv_b_2\\\\14.6^2=v_{a2}^2+v_{b2}^2\\\\v_{b2}^2=213.16-v_{a2}^2

Let +x along A's initial direction and +y along A's final direction makes the angle 62\textdegree

\dot v_{a1}=14.6i\\\\\dot v_{a2}=(v_{a2} \ cos \ 28\textdegree)i+(v_a_2\ sin \ 28\textdegree)j\\\\\dot v_{b2}=v_{b2x}i+v_{b2y}j

#Substitute in v_{b2}^2=213.16-v_{a2}^2:

\dot v_{b2}=(14.6i)-\dot v{a2}\\\\\dot v_{b2}.\dot v_{b2}=v_{b2}^2\\\\\#Right \ side\\\\(14.6i-\dot v{a2}).(14.6i-\dot v{a2})=(14.6i)^2+\dot v_{a2}^2.\dot v_{a2}^2-2(14.6i).\dot v_{a2}\\\\=213.16+v_{a2}^2-2(14.6i).(v_{a2}\ cos 28\  \textdegree i+v_{a2} \ sin \ 28\textdegree j)\\\\v_{b2}^2=213.16+v_{a2}^2-29.2\ cos \ 28\textdegree v_{a2}\ \  v_{b2}^2=213.16-v_{a2}^2\\\\213.16-v_{a2}^2=213.16+v_{a2}^2-29.2\ cos \ 28\textdegree v_{a2}\\\\2v_a2}^2=29.2\ cos\ 28 \textdegree v_{a2}\\\\

v_{a2}=12.891\ m/s

Hence, the the speed of puck A after the collision is 12.891  m/s

#. The velocity of A after the collision is;

\dot v_{a2}=12.891 \ cos \ 28 \textdegree i+12.891 \ sin \ 28\textdegree j\\\\=11.382i+6.052j

Substitute \dot v_{a2} into \dot v_{b2}=(14.6i)-\dot v{a2}:

\dot v_{b2}=14.6i-(11.382i+6.052j)\\\\=3.218i-6.052j

This is the velocity of puck B after the collision, it's speed is:

v_{b2}=\sqrt{v_{b2x}^2+v_{b2y}^2}\\\\=\sqrt{3.218^2+(-6.052)^2}\\\\v_{b2}=6.8544 \ m/s

The velocity of puck B after the collision is 6.8544 m/s

c. The direction of puck B after the collision is:

\theta _b=tan^{-1}\frac{v_{b2y}}{v_{b2x}}\\\\=tan^{-1} \frac{-6.052}{3.218}\\\\\approx 62\textdegree

Hence, the direction of B's velocity after the collision is 62°

You might be interested in
Two blocks of masses 3.0 kg and 5.0 kg are connected by a spring and rest on a frictionless surface. They are given velocities t
miskamm [114]

Answer:

-0.7 m/sec

Explanation:

Mass of first block = m1 =3.0 kg

Mass of second block = m2= 5.0 kg

Velocity of first block = V1= 1.2 m/s

Velocity of second block = V2 = ?

Momentum of Center of mass MVcom  is sum of both blocks momentum and is given by

MVcom= m1v1+m2v2

Where

M= mass of center of mass

Vcom= Velocity of center of mass=0 m/s (because center of mass is at rest , so Vcom = 0 m.sec)

Putting values, we get;

0= 3×1.2+5v2

==> v2=  3.6/5= - 0.7 m/s

-ve sign indicates that block 2 is moving in opposite direction of block 1

3 0
3 years ago
The relative highness or lowness of a sound is called ______. Multiple Choice pitch timbre dynamics octave
Assoli18 [71]
Pitch is the answer…….
8 0
2 years ago
A baseball thrown by a pitcher is hit by a batter. At the moment when the ball hits the bat, the force exerted on the bat by the
Slav-nsk [51]

Newton's Laws of motion describe the motion of an object based on the applied force

The correct option that gives the relationships between the forces is the the option;

\underline{F_{ball}}<u> on bat</u> = \underline{F_{bat}}<u> on ball</u>

<em>(Either option A or B without the minus symbol before </em>F_{bat}<em>, likely typographical error)</em>

<em />

Reason:

Force exerted on the bat by the ball = F_{ball}

Force exerted on the ball by the bat = F_{bat}

Given that the batter hits the ball with the bat, the force exerted by the bat on the ball, F_{bat}, is reacted to by the force of the ball acting on the bat, F_{ball}

According to Newton's third law of motion, action and reaction are equal and opposite. Therefore, at the moment when the ball hits the bat, we have;

\underline{F_{ball}}<u> on bat</u> = \underline{F_{bat}}<u> on ball</u>

<em>Where the force of the bat is high, the ball is accelerated to travel at high speed</em>

Learn more Newton's Laws of motion here:

brainly.com/question/24522313

8 0
2 years ago
PLEASE PLEASE HELP! this is on newton’s 2nd law! i will award 20 points and make you brainliest! ASAP PLEASE! ;)
horsena [70]

Answer: The correct answer is B

Explanation: The string is pulling right and the string is unraveling causing it to accelerate left

5 0
3 years ago
Read 2 more answers
The diagram below shows the velocity vectors for two cars that are moving relative to each other.
scoundrel [369]

Answer:

The answer is "5 \ \frac{m}{s} \ west"

Explanation:

\to \vec{V_1} = (25 \frac{m}{s}) (\hat{-i})\\\\\to  \vec{V_2} = (20 \frac{m}{s}) (\hat{-i})\\\\

velocity of car | respect to car :

\to \vec{V_{12}} = \vec{V_1} - \vec{V_2}\\\\

          =\vec{-25} \hat{i}+ \vec{20} \hat{i}\\\\= 5 \ \frac{m}{s} \ west

7 0
3 years ago
Other questions:
  • The engineer determines that the machine increased at a constant rate the disk’s angular speed from 100 rad/s to 300 rad/s over
    9·1 answer
  • In each case, you should demonstrate how you worked out your answer, as well as giving the answer.
    15·2 answers
  • An object is dropped from the top of a 200 m tower. its height above the ground after t seconds is 200 - 4.9t^2. how fast fallin
    9·1 answer
  • How much heat is required to warm 1.40 l of water from 20.0 ∘c to 100.0 ∘c? (assume a density of 1.0g/ml for the water.)?
    6·1 answer
  • A 12-pack of Omni-Cola (mass 4.30 kg) is initially at rest ona horizontal floor. It is then pushed in a straight line for1.20 m
    12·1 answer
  • You have two photos of a person walking. One shows the person at the corner of Third and Main streets, the other shows the perso
    10·1 answer
  • If the weight of an object of mass "m" is "mg," then the weight of an object of mass "2m" is
    13·2 answers
  • A planet is discovered orbiting around a star in the galaxy Andromeda at the same distance from the star as Earth is from the Su
    14·1 answer
  • Power Rating of a Resistor. The power rating of a resistor is the maximum power the resistor can safely dissipate without too gr
    5·1 answer
  • Two car collide in an intersection. The speed limit in that zone is 30 mph. The car (mass of 1250 kg) was going 17.4 m/s (38.9).
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!