The correct option is this: SCIENTISTS HAVING DIFFERENT INTERESTS ARRIVE AT DIFFERENT CONCLUSIONS.
There are many fields in science and the scientists working in these fields have varying interests. The interests that a scientist has in a certain research will determines his views and conclusions about such a research.<span />
Answer:
Re=160ohm
Explanation:
Step#1
Rt=R1+R2 ( because both are in series)
Rt=(100+220 ) ohm
Rt=320 ohm
Step#2
Rt and R3 are parallel so,
Re= (Rt× R3) ÷ (Rt+R3)
Re= (320×320)÷( 320+320)
Re = 102,400÷ 640
Re=160ohm
Answer:
The average acceleration of the ball during the collision with the wall is 
Explanation:
<u>Known Data</u>
We will asume initial speed has a negative direction,
, final speed has a positive direction,
,
and mass
.
<u>Initial momentum</u>

<u>final momentum</u>

<u>Impulse</u>

<u>Average Force</u>

<u>Average acceleration</u>
, so
.
Therefore, 
Answer:
Core
Radiative zone
Convective zone
Photosphere
Chromosphere
Transient region
Corona
Ranks of layers based on their distance from the sun’s center
1st-corona
2nd-Transient region
3rd-chromosphere
4th-Photosphere
5th-convective zone
6th-radiative zone
7th-core
This situation describes the Hooke's Law which states that "When an elastic object - such as a spring - is stretched, the increased length is called its extension. The extension of an elastic object is directly proportional to the force applied to it". The formula is <span>F = k × e , F for the force, k for spring constant expressed in N/m, e for extension in m. This equation works for as long the spring is not stretch too much because once it exceeded its limit, the spring will not return to its original length the moment the load is removed.</span>