Answer:
5.25 m
Explanation:
Given;
The height equation h;
h=-x^2+3x+3
Where;
h = the height above water
x = horizontal distance from the end of the board
The maximum height is at h' = 0, when change in h with respect to change in x is equal to zero.
differentiating the equation h.
dh/dx = h' = -2x + 3 = 0
Solving for x;
2x = 3
x = 3/2
Substituting into the function h;
h max = -x^2+3x+3
h max = -(3/2)^2 + 3(3/2) +3 = -9/4 +9/2 +3 = 9/4 + 3 =
h max = 21/4 = 5.25 m
<h3><u>Answer;</u></h3>
Period = 1/17 seconds
<h3><u>Explanation;</u></h3>
- Wavelength is related to period by the expression:
<em>speed = wavelength / period
</em>
- If we are given the speed, then we can easily calculate the period at the wavelength of 20 m.
<em>Given the speed of sound wave as 340 m/s </em>
<em>Period = Wavelength/ speed</em>
<em> = 20 m/340 m/s</em>
<em> </em><u><em>= 1/17 seconds</em></u>
If <em>the isotherms</em> are spaced closely together over some portion of the map, there is a drastic temperature change over that portion.
Answer:
The correct answer is a
Explanation:
At projectile launch speeds are
X axis vₓ = v₀ = cte
Y axis = v_{oy} –gt
The moment is defined as
p = mv
For the x axis
pₓ = mvₓ = m v₀ₓ
As the speed is constant the moment is constant
For the y axis
p_{y} = m v_{y} = m (v_{oy} –gt) = m v_{oy} - m (gt)
Speed changes over time, so the moment also changes over time
Let's examine the answer
i True
ii False. The moment changes with time
The correct answer is a
Answer:
Opposition of passing a electric circuit