Let the mass of the person be m. Total momentum is conserved (because the exterior forces on the system are balanced), especially the component in the vertical direction.
Given that,
Mass of gallon is M
Let man mass be m
Velocity of man is v
Let velocity if ballot be Vb
When the person begin to move we have
Conservation of momentum
mv + MVb=0
MVb=-mv
Vb= -(m/M) v
Given that the mass of man is less than mass of balloon. i.e. m<M
So, if m<M, then, m/M <1
Therefore, .
Vb= -(m/M) v
Vb< -v
This implies that the velocity of balloon is less than the velocity of man and if is also moving in opposite direction
So the man is moving upward, then the balloon is moving downward and it's velocity is less than the velocity of man,
The answer is C
Down with a speed less than v
Answer:
0.98kW
Explanation:
The conservation of energy is given by the following equation,


Where
Mass flow
Specific Enthalpy (IN)
Specific Enthalpy (OUT)
Gravity
Heigth state (In, OUT)
Velocity (In, Out)
Our values are given by,




For this problem we know that as pressure, temperature as velocity remains constant, then


Then we have that our equation now is,



Magnitude of the force of tension: 139 N
Explanation:
The surface of the ramp here is assumed to be the positive x-direction.
To solve this problem and find the magnitude of the force of tension, we have to analyze only the situation along the x-direction, since the force of tension lie in this direction.
There are three forces acting along the x-direction:
- The force of tension,
, acting up along the plane - The force of friction,
, acting down along the plane - The component of the weight in the x-direction,
, acting down along the plane
We know that the magnitude of the weight is

So its x-component is

The net force along the x-direction can be written as

And therefore, since the net force is 98 N, we can find the magnitude of the force of tension:

Learn more about inclined planes:
brainly.com/question/5884009
#LearnwithBrainly
Sum of all forces = mass * acceleration
Ft= tension force
Fw= force of gravity (Fw= mass* acceleration of gravity which is 9.8 this only applies to force of gravity)
Ft- Fw = 0 (there is no acceleration)
Ft = Fw
Ft= m*g
Ft= 0.250kg*9.8m/s
Ft= 2.45N