The formation of the outer planets are affected by their
distance from the sun with having them to maintain the lighter elements that
they are composed of such as the hydrogen and helium, having them far away will
also make their planet more cooler as the sun is distant from them.
Answer:
Option e) 320 s
Explanation:
Here, distance = 3.0 km = 3000 m
The velocity of boat when it is going upstream;
Upstream velocity = velocity of boat in still water - velocity of river flow
So, Upstream velocity 
So,Time to go upstream

The velocity of boat when it is going downstream;
Downstream velocity = velocity of boat in still water + velocity of river flow
So, Downstream velocity 
So,Time to go downstream

So, total time (t) = 
Option E is the correct answer.
Answer:
a) 600 meters
b) between 0 and 10 seconds, and between 30 and 40 seconds.
c) the average of the magnitude of the velocity function is 15 m/s
Explanation:
a) In order to find the magnitude of the car's displacement in 40 seconds,we need to find the area under the curve (integral of the depicted velocity function) between 0 and 40 seconds. Since the area is that of a trapezoid, we can calculate it directly from geometry:
![Area \,\,Trapezoid=(\left[B+b]\,(H/2)\\displacement= \left[(40-0)+(30-10)\right] \,(20/2)=600\,\,m](https://tex.z-dn.net/?f=Area%20%5C%2C%5C%2CTrapezoid%3D%28%5Cleft%5BB%2Bb%5D%5C%2C%28H%2F2%29%5C%5Cdisplacement%3D%20%5Cleft%5B%2840-0%29%2B%2830-10%29%5Cright%5D%20%5C%2C%2820%2F2%29%3D600%5C%2C%5C%2Cm)
b) The car is accelerating when the velocity is changing, so we see that the velocity is changing (increasing) between 0 and 10 seconds, and we also see the velocity decreasing between 30 and 40 seconds.
Notice that between 10 and 30 seconds the velocity is constant (doesn't change) of magnitude 20 m/s, so in this section of the trip there is NO acceleration.
c) To calculate the average of a function that is changing over time, we do it through calculus, using the formula for average of a function:

Notice that the limits of integration for our case are 0 and 40 seconds, and that we have already calculated the area under the velocity function (the integral) in step a), so the average velocity becomes:

Earths atmosphere, Temperature, Plant life and Oxygen I guess
<span>Calculating heat gained or lost requires mass, specific heat, and
</span><span>c. change in temperature.</span><span>
</span>