Answer:
W = 18.88 J
Explanation:
Given that,
Constant force, F = 11.8 N (in +x direction)
Mass of an object, m = 4.7 kg
The object moves from the origin to the point (1.6i – 4.6j) m
We need to find the work is done by the given force during this displacement. The work done by an object is given by the formula as follows :

So, the work done by the given force is 18.88 J.
Answer:
- <u>The energy change would be 46kJ</u>
- <u>The energy would be absorbed</u>
Explanation:
The <em>energy change </em>during a chemical reation, i.e. the reaction energy, is equal to the chemical energy stored in the<em> bonds of the products </em>less the chemical energy stored in the <em>bonds of the reactants</em>.
Hence:
- <em>Energy change</em> = 478 kJ - 432kJ = 46kJ
The change is positive, this is, the chemical energy of the products is greater than the chemical energy of the reactants.
That corresponds to the second graph, where the level of the energy of the products in the graph is higher than the level of the energy of the reactants. Therefore, the conclusion is that the reaction <em>absorbed energy</em> and it is endothermic.
Answer:
refractive index of the unknown material is 1.33.
Explanation:
μ₁ = 1.21
incidence angle (i) = 41.9°
refraction angle (r) = 37.3°
Let us assume μ be the refractive index of the unknown material
according to snell's law of refraction.
μ₁ sin i = μ₂ sin r
1.21 × sin 41.9° = μ × sin 37.3°
μ = 1.33
hence the refractive index of the unknown material comes out top be 1.33
Answer:
The corresponding magnetic field is
Explanation:
From the question we are told that
The electric field amplitude is 
Generally the magnetic field amplitude is mathematically represented as

Where c is the speed of light with a constant value

So


Since 1 T is equivalent to 
