The answer is never, that is, on a 2 dimensional plane. You can perform an experiment to see why it is the case. On curved surfaces though, two lines can intersect one another more than once. For instance, on the surface of planet Earth, two lines can intersect one another, both at the Earth's North Pole and South Pole.
Answer:
B
Step-by-step explanation:
Data set D does not contain the value 128, which is the median value.
Data set C does not contain the outlier value 91.
Data set A contains value 168, which does not show up on the plot.
The only remaining choice is B.
_____
In order, the data values of set B are ...
... 91, 114, 120, 126, 128, 128 134, 136, 139, 142, 152
The median value of these 11 is the 6th one: 128. The median values of the remaining two sets of 5 are 120 and 139, making these values the quartiles at the ends of the box. The value 91 is more than 1.5 times the IQR (19) below the 1st quartile, so is considered an outlier. (The cutoff is 120-1.5·19=91.5.)
Answer:
LCM of 6 and 15 by Listing Multiples
Step 2: The common multiples from the multiples of 6 and 15 are 30, 60, . . . Step 3: The smallest common multiple of 6 and 15 is 30.
Answer:
Distributive Property
Step-by-step explanation:
The distributive property of multiplication over addition can be used when you multiply a number by a sum.
Answer:
The equation that can be used to determine the maximum height is given as h = 15tan4.76°
Step-by-step explanation:
The question given is lacking an information. Here is the correct question.
"By law, a wheelchair service ramp may be inclined no more than 4.76 degrees. If the base of the ramp begins 15 feet from the base of a public building, which equation could be used to determine the maximum height, h, of the ramp where it reaches the building's entrance"
The whole set up will give us a right angled triangle with the base of the building serving as the adjacent side of the triangle and the height h serving as the opposite side since it is facing the angle 4.76°
The side of the wheelchair service ramp is the hypotenuse.
Given theta = 4.76°
And the base of the building = adjacent = 15feet
We can get the height of the building using the trigonometry identity SOH CAH TOA.
Using TOA
Tan(theta) = opposite/Adjacent
Tan 4.76° = h/15
h = 15tan4.76°
The equation that can be used to determine the maximum height is given as h = 15tan4.76°