Answer:
Fnet - Fg
Explanation:
When an object is in an elevator, its weight varies with respect to the direction of movement of the elevator and the elevators acceleration.
The weight, W, of an object can be expressed as;
W = mg
where m is the object's mass, and g is the acceleration due gravity.
If the object is in an elevator that speed up, an apparent weight would be felt since both mass and elevator are moving against gravitational pull of the earth.
So that,
= mg + ma
where: mg is the weight of the object, and ma is the apparent weight.
Apparent weight (ma) =
- mg
Answer:
Level 4 to level 2
Explanation:
Electrons in an atom are contained in specific energy levels (1, 2, 3, and so on) having different distances from the nucleus. When light is emitted by electrons from one energy level to a lower level, level 4 to level 2 has the greatest energy.
Hence, the correct option is "Level 4 to level 2".
Answer:
lift per meter of span = 702 N/m
Explanation:
See attached pictures.
Answer:
The BOD concentration 50 km downstream when the velocity of the river is 15 km/day is 63.5 mg/L
Explanation:
Let the initial concentration of the BOD = C₀
Concentration of BOD at any time or point = C
dC/dt = - KC
∫ dC/C = -k ∫ dt
Integrating the left hand side from C₀ to C and the right hand side from 0 to t
In (C/C₀) = -kt + b (b = constant of integration)
At t = 0, C = C₀
In 1 = 0 + b
b = 0
In (C/C₀) = - kt
(C/C₀) = e⁻ᵏᵗ
C = C₀ e⁻ᵏᵗ
C₀ = 75 mg/L
k = 0.05 /day
C = 75 e⁻⁰•⁰⁵ᵗ
So, we need the BOD concentration 50 km downstream when the velocity of the river is 15 km/day
We calculate how many days it takes the river to reach 50 km downstream
Velocity = (displacement/time)
15 = 50/t
t = 50/15 = 3.3333 days
So, we need the C that corresponds to t = 3.3333 days
C = 75 e⁻⁰•⁰⁵ᵗ
0.05 t = 0.05 × 3.333 = 0.167
C = 75 e⁻⁰•¹⁶⁷
C = 63.5 mg/L
The wind speed increased but in the same direction.
It is A/1 because the wind speed did increase and it is still going the same way clockwise because it also did not move that much.