Answer:
Option B. 32 g
Explanation:
From the question given above, the following data were obtained:
Original amount (N₀) = 128 g
Half-life (t½) = 2.25 billion years
Number of half-lives (n) = 2
Amount remaining (N) =?
The amount of 128 gram of Radium-226 that will remain after 2 half-lives has elapsed can be obtained as followb
N = 1/2ⁿ × N₀
N = 1/2² × 128
N = 1/4 × 128
N = 0.25 × 128
N = 32 g
Therefore, 32g of the sample will remain.
200n because it's 2×5=10so maybe try solving the problem like that ok does that help
Answer:
22.05 Kg
Explanation:
Apply the formula:
GPE = Gravity . Mass . ΔHigh
2778.3 = 10 . Mass . 12.6
2778.3 = 126 . Mass
Mass = 2778.3/126
Mass = 22.05
Because many fuels are fossil fuels they take millions of years to form and the known reserves are being used much faster than the new ones being made