Given:
The initial velocity of the object, v=30 m/s
a_t=0
a_c≠0
The time period is Δt.
To find:
The right conclusion among the given choices.
Explanation:
a_t represents the tangential accleration on the object and a_c represents the centripetal acceleration on the object.
The centripetal acceleration is the acceleration that keeps the object in its circular path. The centripetal force only changes the direction of the velocity and not the magnitude.
Thus the magnitude of the velocity of the object remains the same after a time interval of Δt. But the direction of the velocity of the object will be changed and will be unknown after Δt seconds.
Final answer:
Thus the object will be traveling at 30 m/s in some unknown direction.
Therefore, the correct answer is option a.
Answer:
8.5 m/s
Explanation:
please see paper for the work!
Answer:
100,048
Explanation:
K.E = 1/2 m (v)^2
K.E = 1^/2 * 74 * (52)^2
K.E = 100,048J =100.048kJ
Explanation :
It is given that,
Mass of the car, m = 1000 kg
Force applied by the motor, 
The static and dynamic friction coefficient is, 
Let a is the acceleration of the car. Since, the car is in motion, the coefficient of sliding friction can be used. At equilibrium,




So, the acceleration of the car is
. Hence, this is the required solution.
Answer:
Due to the resistance of air, a drag force acts on a falling body (parachute) to slow down its motion. Without air resistance, or drag, objects would continue to increase speed until they hit the ground. The larger the object, the greater its air resistance. Parachutes use a large canopy to increase air resistance. Also, Once the parachute is opened, the air resistance overwhelms the downward force of gravity. The net force and the acceleration on the falling skydiver is upward. An upward net force on a downward falling object would cause that object to slow down. The skydiver thus slows down. Sorry if not helpful.