Answer: 1 mol of oxygen, O₂, and 1 mol of CO will have the same number of molecules, and the same number of atoms.
Justification:
Althought the question is too open, other answers may arise, the most remarkable similarity between the two compounds is that both are diatomic.
That means that both molecules oxygen, O₂, and carbon monoxide, CO have two atoms.
So, 1 mol of oxygen, O₂, and 1 mol of CO will have the same number of molecules, and the same number of atoms.
You must remember that 1 mol means a specific number. It is Avogadro's number, which is 6.022 × 10 ²³.
So 1 mol of CO and 1 mol of O₂ are the same number of representative particles: 6.022 ×10²³ molecules eac, and two times that number of atoms each (since each molecule has two atoms).
Answer:
Cd is oxidized during the discharge of the battery
Explanation:
Based on the reaction:
2 NiOOH + Cd + 2H₂O → 2Ni(OH)₂ + Cd(OH)₂
And knowing Oxygen and hydrogen never change its charge, we must to find oxidation state of Ni and Cd before and after the reaction:
<em>Ni:</em>
In NiOOH: 2 O = -2*2 = -4 + 1H = +1, = -4 + 1 = -3. And as the molecule is neutral, Ni is 3+
In Ni(OH)₂: OH = -1. As there are 2 OH = -2. That means Ni is +2
The Ni is gaining one electron, that means is been reduced
<em>Cd:</em>
Cd before reaction is as pure solid with oxidation state = 0
Cd after the reaction is as Cd(OH)₂: 2 OH = -2. That means Cd is +2
The Cd is loosing 2 electrons, that means is the species that is oxidized.
The termination step of the free-radical chlorination of methane is the most stable one among all three steps.
The free-radical substitution reaction between chlorine and methane features three major steps:
Initiation, during which chlorine molecules undergo homolytic fission to produce chlorine free radicals. Ultraviolet radiations are typically applied to supply the energy required for breaking the chlorine-chlorine single bonds. The initiation step is thus <em>endothermic</em>.
Propagation, a process in which chlorine free radicals react with methane molecules and remove a hydrogen atom from the alkane to produce hydrogen chloride and an alkyl radical e.g.,
. The carbon-containing free radical would react with chlorine molecules to produce chloromethane and yet another chlorine free radical. This process can well repeat itself to chlorinate a significant number of methane molecules.
Termination. Free radicals combine to produce molecules. For example, two chlorine free radicals would combine to produce a chlorine molecule, whereas two alkyl free radicals would combine to produce an alkane with two-carbon atoms in its backbone.
Chemical processes that increase the stability of a substance reduces its chemical potential energy. Energy conserves, thus such processes would also release energy equal to the potential energy lost in quantity. Free radicals are unstable and- as seen in the propagation step- compete readily with neutral molecules for their electrons. The propagation step keeps the number of free radicals constant and is therefore more exothermic than the initiation step. The termination step reduces the number of free radicals, increase the stability of the system by the greatest extent, and is therefore the most exothermic step among the three.
As it is located at 7s ^2 it will have 2 valence electrons that due to its position in the s orbital it will be prone to losing them to obtain a noble gas configuration.
answer
When an electron temporarily occupies an energy state greater than its ground state, it is in an excited state. An electron can become excited if it is given extra energy, such as if it absorbs a photon, or packet of light, or collides with a nearby atom or particle