<span>This would be the activation energy. This is usually in the form of heat, which allows the reaction to undergo some sort of transition. Many times, enzymes can be used as catalysts to lower the activation energy required for the reaction to take place.</span>
Answer:
Explanation:
In a chemical formula, the oxidation state of transition metals can be determined by establishing the relationships between the electrons gained and that which is lost by an atom.
We know that for compounds to be formed, atoms would either lose, gain or share electrons between one another.
The oxidation state is usually expressed using the oxidation number and it is a formal charge assigned to an atom which is present in a molecule or ion.
To ascertain the oxidation state, we have to comply with some rules:
- The algebraic sum of all oxidation numbers of an atom in a neutral compound is zero.
- The algebraic sum of all the oxidation numbers of all atoms in an ion containing more than one kind of atom is equal to the charge on the ion.
For example, let us find the oxidation state of Cr in Cr₂O₇²⁻
This would be: 2x + 7(-2) = -2
x = +6
We see that the oxidation number of Cr, a transition metal in the given ion is +6.
Answer:
The answer is B an open system allows energy and mass to move in and out of it
Hope it helps
B positive and negative ion