When a substance is heated, it gains thermal energy. Therefore, its particles move faster and its temperature rises.
dinosaur footprint
Explanation:
A dinosaur footprint is an example of a trace fossil. A trace fossil is a type of fossil that shows the activities of organisms that lived in the past.
- Fossils are the preserved remains of organisms that lived several years ago.
- Fossils are usually found in sedimentary rocks and thick layers of ice in temperate and polar regions.
- Body fossils are the remains of the body parts of an organism that has been preserved. They can be skeletal parts, teeth, eggs e.t.c
- A trace fossil shows the preserved remains of the activities of an organism.
- They can be fingerprints, burrows and borings, feccal pellets e.t.c
Learn more":
fossils and evolution brainly.com/question/12790206
#learnwithBrainly
Answer: 27.09 ppm and 0.003 %.
First, <u>for air pollutants, ppm refers to parts of steam or gas per million parts of contaminated air, which can be expressed as cm³ / m³. </u>Therefore, we must find the volume of CO that represents 35 mg of this gas at a temperature of -30 ° C and a pressure of 0.92 atm.
Note: we consider 35 mg since this is the acceptable hourly average concentration of CO per cubic meter m³ of contaminated air established in the "National Ambient Air Quality Objectives". The volume of these 35 mg of gas will change according to the atmospheric conditions in which they are.
So, according to the <em>law of ideal gases,</em>
PV = nRT
where P, V, n and T are the pressure, volume, moles and temperature of the gas in question while R is the constant gas (0.082057 atm L / mol K)
The moles of CO will be,
n = 35 mg x x
→ n = 0.00125 mol
We clear V from the equation and substitute P = 0.92 atm and
T = -30 ° C + 273.15 K = 243.15 K
V =
→ V = 0.0271 L
As 1000 cm³ = 1 L then,
V = 0.0271 L x = 27.09 cm³
<u>Then the acceptable concentration </u><u>c</u><u> of CO in ppm is,</u>
c = 27 cm³ / m³ = 27 ppm
<u>To express this concentration in percent by volume </u>we must consider that 1 000 000 cm³ = 1 m³ to convert 27.09 cm³ in m³ and multiply the result by 100%:
c = 27.09 x x 100%
c = 0.003 %
So, <u>the acceptable concentration of CO if the temperature is -30 °C and pressure is 0.92 atm in ppm and as a percent by volume is </u>27.09 ppm and 0.003 %.
Answer : The concentration of is,
Explanation :
When we assume this reaction is driven to completion because of the large excess of one ion then we are assuming limiting reagent is and is excess reagent.
First we have to calculate the moles of KSCN.
Moles of KSCN = Moles of = Moles of =
Now we have to calculate the concentration of
Total volume of solution = (6.00 + 5.00 + 14.00) = 25.00 mL = 0.025 L
Thus, the concentration of is,