Answer:
The most important resonance structure is 4 (attached picture). Its bon order is
or
.
Explanation:
A picture with 4 forms of the perchlorate structure is attached. The first structure has simple bonds. The second structure contains a double bond, the third structure has two double bonds and the fourth structure has three double bonds.
Formal charge = group number of the periodic table - number of bonds (number of bonding electrons / 2) - number of non-shared electrons (lone pairs)
The formal charges in the first structure is +3 in chlorine and -1 in oxygen.
The formal charges in the second structure is +2 in chlorine, -1 in oxygen and 0 in the double bond oxygen.
The formal charges in the third structure is +1 in chlorine, -1 in the single bond oxygens and 0 in the double bond oxygens.
The formal charges in the fourth structure is 0 in chlorine, -1 in the single bond oxygen and 0 in the double bond oxygens.
The most important resonance structure is given by:
- Most atoms have 0 formal charge.
- Lowest magnitude of formal charges.
- If there is a negative formal charge, it's on the most electronegative atom.
Hence, the fourth structure is the mosr important.
The bond order of the structure is:
Total number of bonds: 7
Total number of bond groups: 4
Bond order= 
Water and hydrogen peroxide are different compounds although they have the same kind of atoms. The molecular formula of water is H2O (two atoms of oxygen chemically bonded to one atom of oxygen). The molecular formula of hydrogen peroxide is H2O2, (each atom of oxygen is chemical bonded to one atom of H and other atom of O). So,<span> the presence of different chemical bonds leads to different products with different chemical properties.</span><span />
Molar mass ( CuSO₄) = 159.609 g/mol
159.609 g ----------------- 6.02 x 10²³ molecules
? g ------------------ 3.36 x 10²³ molecules
mass = ( 3.36 x10²³) x 159.609 / 6.02 x 10²³
mass = 5.36 x 10²⁴ / 6.02 x 10²³
mass = 8.90 g
hope this helps!
Ammonia is formed by a reaction between hydrogen and nitrogen as shown by the equation below.
N2(g) + 3H2(g) = 2NH3(g)
1 mole of ammonia contains 17 g
Therefore 10.78 g of ammonia are equivalent to 10.78/17 = 0.6341 moles
The mole ratio of hydrogen to ammonia is 3 : 2
Therefore, moles of hydrogen used will be 0.6341 × 3/2 = 0.9512 moles
1 mole of hydrogen is equivalent to 2 g
Thus, the mas of hydrogen will be 0.9512 moles × 2 = 1.9023 g