Answer: Required expression:
Result: 
Step-by-step explanation:
Given phrase: 
Required expression:
['+' used to express sum, 'x' used in place of 'of']
Since 18+16 = 34
Then,
![\dfrac14\times(18+16)=\dfrac14\times34 \\\\=\dfrac{1}{2}\times17\ \ \text{[Divide numerator and denominator by 2]}\\\\=\dfrac{17}{2}](https://tex.z-dn.net/?f=%5Cdfrac14%5Ctimes%2818%2B16%29%3D%5Cdfrac14%5Ctimes34%20%20%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B2%7D%5Ctimes17%5C%20%5C%20%5Ctext%7B%5BDivide%20numerator%20and%20denominator%20by%202%5D%7D%5C%5C%5C%5C%3D%5Cdfrac%7B17%7D%7B2%7D)
Hence,
Answer:
4n+2
Step-by-step explanation:
- add all sides =9n+3
- 3n+2+2n-1=9n+3
- add liketerms 5n+1=9n+3
- put liketerms together 9n-5n+3-1
- ans hence is 4n+2
Answer:
the first and second one
Step-by-step explanation:
the two last ones go over budget
1) 20×30=600 30×50=1500 total is 2100
2)50×30=1500 10×50= 500 total is 2000
3) 40×30=1200 40×50=2000 total is 3100>over budget.
4) 20×30=600 60×50=3000 total is 3600> way over budget.
Th term of an arithmetic sequence:
We have to find the difference (d)
an=a₁+(n-1)d
Data:
a₁=-7
a₁₈=95
95=-7+(18-1)d
95+7=17d
17d=102
d=102/17
d=6
Now, we can calculate the 35 th term of an arithmetic sequence:
a₃₅=-7+(35-1)*6
a₃₅=-7+34*6
a₃₅=-7+204
a₃₅=197
Answer: the 35th term of this arithmetic sequence is 197. (a₃₅=197)