Answer:
80 kg
Explanation:
because the liquid with high boiling point is going to be collected the first
Answer:
The ionization equation is
⇄
(1)
Explanation:
The ionization equation is
⇄
(1)
As the Bronsted definition sais, an acid is a substance with the ability to give protons thus, H2PO4 is the acid and HPO42- is the conjugate base.
The Ka expression is the ratio between the concentration of products and reactants of the equilibrium reaction so,
![Ka = \frac{[HPO_{4}^{-2}] [H_{3}O^{+}]}{[H_{2}PO_{4}^{-}] [H_{2}O]} = 6.2x10^{-8}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5BHPO_%7B4%7D%5E%7B-2%7D%5D%20%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5BH_%7B2%7DPO_%7B4%7D%5E%7B-%7D%5D%20%5BH_%7B2%7DO%5D%7D%20%3D%206.2x10%5E%7B-8%7D)
The pKa is

The pKa of H2CO3 is 6,35, thus this a stronger acid than H2PO4. The higher the pKa of an acid greater the capacity to donate protons.
In the body H2CO3 is a more optimal buffer for regulating pH due to the combination of the two acid-base equilibriums and the two pKa.
If the urine is acidified, according to Le Chatlier's Principle the equilibrium (1) moves to the left neutralizing the excess proton concentration.
Answer: a rection will most likely occur if the colliding partilces have the proper orientation and energy.
The reactions occur becasue the molecules collide.
But not all the collisions result in a reaction.
The collisions have to meet some requirements.
Two of the basic requirements is that the collision has enough energy to overcome the activation energy and that the molecules collide in the riight way.
When two molecules react it is necessary that one element of one of the molecules interact when a specific element or group in the other molecule. That is the orientation must be the right one.
Collisions that to not have the proper orientation or enough energy will not cause reaction (changes in the bonds of the molecules).
Answer:
The oxidation state of Cl in HCIO3 is <u><em>+5</em></u>
Explanation:
While atomic radii DECREASE across a Period, a row of the Period Table, from left to right as we face the Table, atomic radii INCREASE down a Group, a column of the Periodic Table, due to the shielding of the valence electrons by the closed valence shell(s) that intervenes between the nucleus and the valence, outermost electrons.