Answer:
<h2>Density = 0.5 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula
<h3>

</h3>
From the question
mass = 60 g
volume = 120 mL
Substitute the values into the above formula and solve
That's
<h3>

</h3>
We have the final answer as
<h3>Density = 0.5 g/mL</h3>
Hope this helps you
Answer:
8.20 % → Percent yield reaction
Explanation:
To find the percent yield of reaction we apply this:
(Produced yield / Theoretical yield) . 100 = %
Produced yield = 112.9 g
Theoretical yield = 1375.5 g
We replace → (112.9g / 1375.5 g) . 100
8.20 % → Percent yield reaction
Answer:
1) correct
2) incorrect
3) correct
4)incorrect
Explanation:
1) A Lewis acid is a substance that accepts a nonbonding pair of electrons.
A Bronsted-Lowry acid is a substance that donates a proton H⁺
Since the donation of a proton involves the acceptance of a pair of electrons, every Bronsted-Lowry acid is also a Lewis acid.
2)A Lewis acid not necessarily needs to have a proton to be donated.
3) Conjugated acids of weak bases are strong acids and conjugated acids of strong bases are weak acids.
4)K⁺ comes from a strong base, therefore is does not have an acidic behaviour.
Answer:
1) 2Al + 6HCl ⟶ 2AlCl₃ + 3H₂
Fe + 2HCl ⟶ FeCl₂ + H₂
2) Cu = 2.5 g; Al = 3.5 g; Fe = 4.0 g
Explanation:
1) Possible reactions
2Al + 6HCl ⟶ 2AlCl₃ + 3H₂
Fe + 2HCl ⟶ FeCl₂ + H₂
2) Mass of each metal
a) Mass of Cu
The waste was the unreacted copper.
Mass of Cu = 2.5 g
b) Masses of Al and Fe
We have two relations
:
Mass of Al + mass of Fe = 10 g - 2.5 g = 7.5 g
H₂ from Al + H₂ from Fe = 6.38 L at NTP
i) Calculate the moles of H₂
NTP is 20 °C and 1 atm.

(ii) Solve the relationship
Let x = mass of Al. Then
7.5 - x = mass of Fe
Moles of Al = x/27
Moles of Fe = (7.5 - x)/56
Moles of H₂ from Al = (3/2) × Moles of Al = (3/2) × (x/27) = x
/18
Moles of H₂ from Fe = (1/1) × Moles of Fe = (7.5 - x)/56
∴ x/18 + (7.5 - x)/56 = 0.2652
56x + 18(7.5 - x) = 267.3
56x + 135 - 18x = 267.3
38x = 132.3
x = 3.5 g
Mass of Al = 3.5 g
Mass of Fe = 7.5 g - 3.5 g = 4.0 g
The masses of the metals are Cu = 2.5 g; Al = 3.5 g; Fe = 4.0 g
Answer:
Neon
Mass Number Half-life Decay Mode
Electron Capture
Electron Capture with delayed Proton Emission
18 1.6670 seconds Electron Capture
19 17.22 seconds Electron Capture