Answer:
Explanation:
Molar mass of Ca(Cn)2 = 92. 11 mol/g
Answer:
- Acetic acid (CH₃COOH) and hydronium ion (H₃O⁺)
Explanation:
Hello,
In this case, based on the acid-base theory which states that acids are known as H⁺ donors, if we consider the direct reaction:

It is clear that the acetic acid is the first H⁺ donor as it losses one H⁺ to turn into the acetate ion. Moreover, if we consider the inverse reaction:

It is also clear that the hydronium ion is the second H⁺ donor as it losses one H⁺ to turn into water.
Best regards.
<em>The statement that gives the relationship between energy needed in breaking a bond and the one that is released after breakin</em>g is
The amount of energy it takes to break a bond is always less than the amount of energy released when the bond is formed.
- Bond energy can be regarded as amount of energy that is required in breaking a particular bond.
- For a bond to be broken Energy will be added and when a bond is broken there will be release of energy
- Bond breaking can be regarded as endothermic process, it is regarded as endothermic because there is a lot of energy required to be absorbed.
- Where ever a bond is broken, there must be formation of another bond
- Bond forming on the other hand can be regarded as exothermic process, since there is a release of releases energy.
Therefore, more energy is required in breaking of bond compare to energy released after breaking of bond.
Learn more at : brainly.com/question/10777799?referrer=searchResults
The best answer choice here would be 'Combination'