The answer is there is a one-to-one ratio of potassium ions to iodide ions.
Explanation :
- (K) belongs to Alkali metals in group (1A) that contains (1) electron in the outermost energy level, whereas, (I) is from halogens in group (7A) that contains (7) electron in the outermost energy level.
- To achieve stability, both atoms tend to reach the nearest noble state (outermost level occupies 8 electrons). Therefore, (K) loses its outer electron and gives it to (I) which now has a completely filled outer level and an ionic bond is formed between the two.
- The valency (number of electrons lost, gained or shared) of both atoms is equal ”monovalent” which means one-to-one ratio..
Can you show the question that goes with those answer pls
As we know,
1 D = 3.34 × 10⁻³⁰ C.m
So,
1.44 D = ?
Solving for 1.44 D,
= (3.34 × 10⁻³⁰ C.m × 1.44 D) ÷ 1 D
1.44 D = 4.80 × 10⁻³⁰ C.m
Dipole Moment is given as,
Dipole Moment = q × r
Solving for q,
q = Dipole Moment / r ------ (1)
Where,
Dipole Moment = 4.80 × 10⁻³⁰ C.m
r = 163 pm = 1.63 × 10⁻¹⁰ m
Putting values in eq. 1,
q = 4.80 × 10⁻³⁰ C.m / 1.63 × 10⁻¹⁰ m
q = 2.94 × 10⁻²⁰ C
As,
1.602 × 10⁻¹⁹ C = 1 e⁻
So,
2.94 × 10⁻²⁰ C = X e⁻
Solving for X,
X = (2.94 × 10⁻²⁰ C × 1 e⁻) ÷ 1.602 × 10⁻¹⁹ C
= 0.183 e⁻
Result:
So one element is containing + 0.183 e⁻ while the other element is containing - 0.183 e⁻.
Answer : The pH of the solution is, 2.67
Explanation :
The equilibrium chemical reaction is:

Initial conc. 0.450 0 0
At eqm. (0.450-x) x x
As we are given:

The expression for equilibrium constant is:

Now put all the given values in this expression, we get:


The concentration of
= x = 0.00212 M
Now we have to calculate the pH of solution.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)


Therefore, the pH of the solution is, 2.67