1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dahasolnce [82]
3 years ago
13

Use the discriminant to determine the nature of the roots of the following equation. y^2 - 5y - 3 = 0

Mathematics
1 answer:
iris [78.8K]3 years ago
6 0
Here a=1, b= -5 and c= -3

so the discrim. is b^2 - 4(a)(c),   or   (-5)^2 - 4(1)(-3)  = 25 + 12 = 37.

Because the discrim. is +, you'll have 2 real, unequal roots.
You might be interested in
Calculate the limit values:
Nataliya [291]
A) This particular limit is of the indeterminate form,
\frac{ \infty }{ \infty }
if we plug in infinity directly, though it is not a number just to check.

If a limit is in this form, we apply L'Hopital's Rule.

's
Lim_{x \rightarrow \infty } \frac{ ln(x ^{2} + 1 ) }{x} = Lim_ {x \rightarrow \infty } \frac{( ln(x ^{2} + 1 ) ) '}{x ' }
So we take the derivatives and obtain,

Lim_ {x \rightarrow \infty } \frac{ ln(x ^{2} + 1 ) }{x} = Lim_{x \rightarrow \infty } \frac{ \frac{2x}{x^{2} + 1} }{1}

Still it is of the same indeterminate form, so we apply the rule again,

Lim_{x \rightarrow \infty } \frac{ ln(x ^{2} + 1 ) }{x} = Lim_{x \rightarrow \infty } \frac{ 2 }{2x}

This simplifies to,

Lim_{x \rightarrow \infty } \frac{ ln(x ^{2} + 1 ) }{x} = Lim_{x \rightarrow \infty } \frac{ 1 }{x} = 0

b) This limit is also of the indeterminate form,

\frac{0}{0}
we still apply the L'Hopital's Rule,

Lim_ {x \rightarrow0 }\frac{ tanx}{x} = Lim_ {x \rightarrow0 } \frac{ (tanx)'}{x ' }

Lim_ {x \rightarrow0 }\frac{ tanx}{x} = Lim_ {x \rightarrow0 } \frac{ \sec ^{2} (x) }{1 }

When we plug in zero now we obtain,

Lim_ {x \rightarrow0 }\frac{ tanx}{x} = Lim_ {x \rightarrow0 } \frac{ \sec ^{2} (0) }{1 } = \frac{1}{1} = 1
c) This also in the same indeterminate form

Lim_ {x \rightarrow0 }\frac{ {e}^{2x} - 1 - 2x}{ {x}^{2} } = Lim_ {x \rightarrow0 } \frac{ ({e}^{2x} - 1 - 2x)'}{( {x}^{2} ) ' }

Lim_ {x \rightarrow0 }\frac{ {e}^{2x} - 1 - 2x}{ {x}^{2} } = Lim_ {x \rightarrow0 } \frac{ (2{e}^{2x} - 2)}{ 2x }

It is still of that indeterminate form so we apply the rule again, to obtain;

Lim_ {x \rightarrow0 }\frac{ {e}^{2x} - 1 - 2x}{ {x}^{2} } = Lim_ {x \rightarrow0 } \frac{ (4{e}^{2x} )}{ 2 }

Now we have remove the discontinuity, we can evaluate the limit now, plugging in zero to obtain;

Lim_ {x \rightarrow0 }\frac{ {e}^{2x} - 1 - 2x}{ {x}^{2} } = \frac{ (4{e}^{2(0)} )}{ 2 }

This gives us;

Lim_ {x \rightarrow0 }\frac{ {e}^{2x} - 1 - 2x}{ {x}^{2} } =\frac{ (4(1) )}{ 2 }=2

d) Lim_ {x \rightarrow +\infty }\sqrt{x^2+2x}-x

For this kind of question we need to rationalize the radical function, to obtain;

Lim_ {x \rightarrow +\infty }\frac{2x}{\sqrt{x^2+2x}+x}

We now divide both the numerator and denominator by x, to obtain,

Lim_ {x \rightarrow +\infty }\frac{2}{\sqrt{1+\frac{2}{x}}+1}

This simplifies to,

=\frac{2}{\sqrt{1+0}+1}=1
5 0
3 years ago
From these regression results: coefficients standard error t stat intercept 5.6 2.0 2.8 adv 4.9 0.6 9.0 price – 0.5 0.1 – 5.9 su
Margaret [11]
Your so smart you should go to high school
5 0
3 years ago
Which expression is equivalent to |8|+|-7|​
maks197457 [2]

Answer:

8 + 7.

Step-by-step explanation: It is absolute value.

3 0
1 year ago
I need Help fast!!!!
GrogVix [38]

Answer:

7 miles per gallon

Step-by-step explanation:

7 0
3 years ago
What is the order of operations for evaluating expressions
Phantasy [73]
PEMDAS!

Parenthesis
Exponents
Multiplication
Division
Adding
Subtracting
8 0
3 years ago
Read 2 more answers
Other questions:
  • 2x^2-19x+9=0 quadratic formula or zero product property. Which ever is easier?
    14·1 answer
  • What is the correct verbal expression for the mathematical expression 3n+12?
    11·1 answer
  • Find -3 3/4 + 1/2:<br>model the expression in a number line by drawing an arrow​
    13·1 answer
  • How can we use a graph to tell that two populations are equal?
    7·1 answer
  • Using L' Hopital's rule, find the limit of
    12·1 answer
  • The graphs below have the same shape. What is the equation of the blue<br>graph​
    7·2 answers
  • Use grouping symbols to make the following equation true.<br> 5 x 4 = 3²-4=4
    15·1 answer
  • Help please thank you
    5·1 answer
  • Is x=5 a solution to 2(x+7)-1=(x+2)+(x+3)<br><br> Please help this is my quiz
    7·1 answer
  • Solve for b a equals A=3(b + C)
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!